

## A Systematic Review of the Diagnostic Performance of Serum Biomarkers in Paediatric Mild Traumatic Brain Injury

- Mei Li, Lars Breimer, Rebecka Klang, Rolf Ahlzén, Louise Olsson

**The following have contributed to this report:**

The Medical Library, Örebro University

**Clinical aspects:** Mei Li MD, PhD, Lars Breimer MD, PhD, Louise Olsson, MD, PhD

**Statistical aspects:** Rebecka Klang, MSc

**Ethics:** Rolf Ahlzén MD, PhD

**Medical fact box:** András Büki, Professor of Neurosurgery, Örebro university

**Internal review:** Dorothea Lagrange, MD

**External review:** Jussi Posti, Ass Professor of Neurosurgery, Head of Dept Neurocenter, Turku University Hospital, Finland

Paul Petterson Pablo, MD, PhD, consultant, Department of Laboratory Medicine, Örebro University Hospital, Örebro, Sweden

The medical fact boxes in our reports are written by independent experts who were not involved in conducting the systematic review. External reviewers provide valuable feedback that improves the quality of our HTA reports. However, responsibility for the final content rests solely with Camtö. All authors and reviewers declare that they have no financial conflicts of interest related to the topic of this systematic review.

---

This report is available on <https://www.regionorebrolan.se/camto>



Centre for Assessment of Medical Technology in Örebro  
Örebro University Hospital  
S-701 85 Örebro, Sweden

Contact: [camto@regionorebrolan.se](mailto:camto@regionorebrolan.se)

Published 2026-02-03

## Abbreviations

|        |                                                                                                                                |
|--------|--------------------------------------------------------------------------------------------------------------------------------|
| AUC    | Area under curve                                                                                                               |
| ciTBI  | Clinically important traumatic brain injuries                                                                                  |
| CT     | Computed Tomography                                                                                                            |
| ED     | Emergency department                                                                                                           |
| FN     | False negative                                                                                                                 |
| FP     | False positive                                                                                                                 |
| GCS    | Glasgow Coma Scale                                                                                                             |
| GFAP   | Glial fibrillary acid protein                                                                                                  |
| HFABP  | Heart fatty acid binding Protein                                                                                               |
| LR+    | Likelihood ratio of a positive test                                                                                            |
| LR-    | Likelihood ratio of a negative test                                                                                            |
| MHT    | Minor head trauma                                                                                                              |
| mTBI   | Mild traumatic brain injury                                                                                                    |
| NR     | Not reported                                                                                                                   |
| NPV    | Negative predictive value                                                                                                      |
| NSE    | Neuron specific enolase                                                                                                        |
| PECARN | Paediatric Emergency Care Applied Research Network; clinical decision rule for the management of minor head trauma in children |
| PPV    | Positive predictive value                                                                                                      |
| TBI    | Traumatic brain injury                                                                                                         |
| TN     | True negative                                                                                                                  |
| TP     | True positive                                                                                                                  |
| UCH-L1 | Ubiquitin carboxy-terminal hydrolase L1                                                                                        |

## Innehåll

|                                                                              |    |
|------------------------------------------------------------------------------|----|
| Abstract .....                                                               | 5  |
| Populärvetenskaplig sammanfattning (Plain Languange Summary in Swedish)..... | 6  |
| Medical fact box .....                                                       | 7  |
| Background .....                                                             | 11 |
| Methods .....                                                                | 12 |
| Results .....                                                                | 15 |
| Assessment of relevant studies.....                                          | 15 |
| Results reported in the included studies .....                               | 21 |
| Summary of Findings .....                                                    | 24 |
| Ongoing studies .....                                                        | 25 |
| Discussion.....                                                              | 26 |
| References .....                                                             | 28 |
| Ethical reflections.....                                                     | 31 |
| Statistics from Region Örebro County .....                                   | 32 |
| Appendices 1-5.....                                                          | 35 |

## Abstract

### Background

The use of head CT in children after trauma is challenging. We aimed to summarise diagnostic accuracy studies comparing serum biomarkers with CT in patients younger than 18 years presenting with Glasgow Coma Scale (GCS) 14-15.

### Methods

Medline, Embase and the Cochrane Library were searched by librarians from inception to May 30, 2025. The PRISMA reporting guidelines for systematic reviews were followed. Prospective cross-sectional studies were eligible. Risk of bias was assessed using QUADAS-2. Likelihood ratios (LRs) were calculated from extracted data, and results were narratively synthesised.

### Results

Out of 316 identified studies, 117 were assessed in full text. Four studies were relevant but two had unacceptably high risk of bias and were not included in the extraction of outcome data.

One study from 2024, assessed as having a high risk of bias, included 43 children who underwent head CT at the discretion of attending physicians and biomarker testing within 6 hours. At a sensitivity fixed at 100%, the specificity was 35% for S100B, 39% for GFAP, and 37% for HFABP.

Another study from 2015, assessed as having moderate risk of bias, included 109 children who underwent head CT according to the PECARN rule and S100B within 6 hours. Sensitivity for traumatic brain injury was 76%, and specificity 63%.

Calculated LRs indicated the investigated biomarkers are not informative to clinicians.

### Conclusion

Two studies with differing inclusion criteria comprising a total of 152 patients were identified. A clinical benefit of using biomarkers to guide CT use in paediatric patients presenting with a GCS 14-15 after head trauma has yet to be demonstrated.

## Populärvetenskaplig sammanfattning

### Plain Languange Summary in Swedish

#### Bakgrund

Slag mot huvudet är en vanlig orsak till att barn och ungdomar söker på akutmottagningen. I de allra flesta fall har kraften mot huvudet varit begränsad och inte orsakat några skador på hjärnan. För en liten andel kan det finnas skador inne i skallen, trots att barnet verkar ganska normalt. Frågan är om analys av blodprover kan användas för att identifiera de barn som behöver genomgå en datortomografi av hjärnan.

Syftet med detta projekt var att kartlägga studier som jämfört resultat av blodprov med vad datortomografi visar bland barn som söker efter huvudskada men som i stort sett är opåverkade.

#### Metod

Medicinska Biblioteket vid Örebro universitet sökte efter studier i tre databaser utan någon bakre tidsbegränsning och fram till 30 maj 2025. Relevanta studier valdes ut och granskades.

#### Resultat

Till att börja med påträffades 316 studier, varav 117 valdes ut och lästes i sin helhet. Fyra bedömdes till slut som relevanta men två av dem hade inte ett lämpligt upplägg och lämnades därhän.

En studie publicerad 2024 var på 43 barn i Spanien och Schweiz som gjort både datortomografi och fått blodprover analyserade. Bland de barn som inte hade någon hjärnskada på datortomografin hade dock endast en mindre andel (34 %) ett negativt blodprov, dvs andelen falskt positiva blodprov var hög. Det innebär att om man använder analys av blodprov på alla finns risk för att fler barn kommer att skickas till datortomografi trots att de inte har några skador.

En studie från 2015 var på 109 barn i Frankrike som gjort både datortomografi enligt strikta urvalskriterier och fått blodprov analyserade. Resultatet av blodproverna visar att inte alla som hade en hjärnskada på datortomografin också hade ett positivt blodprov, utan endast 76 %. Det är allvarligt eftersom om man enbart litar på blodprovet kan det medföra att man missar barn med hjärnskada. Bland de som inte hade någon skada på datortomografin hade 67 % ett negativt blodprov, dvs var tredje utan skador hade ett falskt positivt prov.

#### Slutsats

Två studier som tillsammans undersökt 152 barn inkluderades i vår rapport. Studierna visar att det i nuläget inte finns någon fördel med att använda blodprov för att hitta barn som behöver en datortomografi efter slag mot huvudet, utan läkarnas kliniska bedömning är bättre.

## Medical fact box (pp 7-10)

András Büki, Professor of Neurosurgery, Örebro university

Overuse of radiation-based imaging (CT) is a major concern in modern medicine, particularly in the pediatric population. To this end, CT decision rules including detailed risk-stratification are constructed with the aim of minimizing the use of CT scanning and to increase the proportion of informed discharge and/or observation on the floor.

Some studies suggest that up to 40% of adult, and at least 10% of pediatric CT scans could be replaced by the inclusion and consistent application of biomarkers as part of the decision-making process/triage.

Unfortunately, while biomarkers are already applied in a handful of adult guidelines and contribute to reaching the above goals, we are still missing large scale diagnostic biomarker studies in the pediatric population that could establish inclusion of biomarkers into pediatric guidelines.

Specifically, most biomarker research has been performed in adults, and age-dependent physiological differences (blood–brain barrier maturity, baseline levels, extracranial sources) limit direct extrapolation. Pediatric normative ranges are poorly established, thereby the validation of research data in the pediatric, clinical TBI population is limited.

A related problem is that existing biomarkers show inconsistent sensitivity for clinically important traumatic brain injury and thus far have not demonstrated persuading superiority to validated clinical decision rules – a concern that can be solved if large scale studies provide further evidence on the clinical application of biomarkers.

Same issues like in the case of studies conducted in the adult population also affect pediatric studies such as heterogeneity of study design, analytic inconsistencies as well as confounding factors like extracranial sources of signal and hemolysis.

Some preliminary results suggest that guideline compliance can be worse in the pediatric population, favoring over-triaging as a reflection of insecurity and anxiety from the care providers' side and that may erode the potential added value of biomarkers in the triage.

As a self-fulfilling prophecy, in lack of considerable amount of evidence, no biomarker is approved by the regulatory bodies to be used in the context of pediatric TBI.

Nevertheless, upcoming large-scale studies like the recently published work by Bouvier et al. may open the field for the diagnostic application of protein biomarkers, even rationalizing the double-marker approach of GFAP-UCH-L1 that is highly disputed in adults.

Detailed clinical studies, implementational surveys and cost-efficiency studies are needed to evaluate the clinical and societal value of TBI biomarkers in the care for pediatric TBI.

## Reference

Bouvier D, et al. (2024). Serum GFAP and UCH-L1 for the identification of clinically important traumatic brain injury in children in France: a diagnostic accuracy substudy. *The Lancet Child & Adolescent Health*. 2024; 9(1): 44-54

## Current Guidelines in Pediatric mild traumatic brain injury – How to establish the indication of a head CT

Current clinical practice is based on four main decision rules to exclude the need for CT scanning following mild traumatic brain injury- *vide infra*.

### **PECARN Rule (Pediatric Emergency Care Applied Research Network)**

The PECARN rule is the most extensively validated clinical decision rule for pediatric head trauma. It aims to identify children at very low risk of clinically important traumatic brain injury (ciTBI), thereby minimising unnecessary exposure to ionizing radiation from CT scans. It applies to children under 18 years of age who present in the ED within 24 hours of blunt head trauma and have a GCS score 14-15. It excludes cases of trivial injury, penetrating trauma, pre-existing neurological disorders, prior neuroimaging, or signs of intoxication. The PECARN rule stratifies patients into two age groups. For children younger than 2 years, CT imaging is recommended in the presence of GCS < 15, altered mental status, or a palpable skull fracture. Observation or CT may be considered if there is a non-frontal scalp hematoma, loss of consciousness lasting at least five seconds, a severe mechanism of injury (such as a fall greater than three feet or being struck by a motor vehicle), or abnormal behavior as reported by the parent. For children aged  $\geq 2$  years, CT imaging is indicated when there is a GCS less than 15, altered mental status, or signs of basilar skull fracture. Observation or CT may be considered in cases of repeated vomiting, loss of consciousness, severe headache, or a severe mechanism of injury (a fall greater than five feet or being struck by a motor vehicle).

### **NEXUS II Rule**

It was originally derived in a population of adults with blunt head trauma, but transferred to pediatric populations. It applies to patients with GCS score  $\geq 14$  and includes both those with and without loss of consciousness. CT is recommended if any of the following features are present: evidence of skull fracture, scalp hematoma, neurologic deficit, abnormal level of alertness, abnormal behavior, persistent vomiting ( $\geq 2$  episodes), or known coagulopathy. Children who do not exhibit any of these findings are considered low risk for clinically important intracranial injury and may not require CT imaging. In these low-risk cases, observation should be considered.

### **NICE Guidelines – Pediatric Head Injury**

The NICE guidelines for head injury assessment in children under 16 years of age is developed and primarily applied in the UK were it has been first published in 2003 and updated in 2023. These guidelines offer a structured approach for determining when urgent CT imaging is needed in pediatric patients presenting with head trauma. They apply to all children with head injuries, including both closed and penetrating trauma, but exclude superficial facial injuries without head involvement. CT imaging should be performed within one hour of identifying high-risk features such as suspected non-accidental injury, post-traumatic seizure in a child without epilepsy, a GCS score less than 14 (or less than 15 in children under one year), a GCS less than 15 two hours post-injury, suspected open or depressed skull fracture, signs of basal skull fracture, focal neurological deficit, or a bruise, swelling, or laceration greater than 5 cm in children under one year. Additionally, CT imaging is recommended within eight hours of injury in children with moderate-risk features including witnessed loss of consciousness exceeding

five minutes, bleeding or clotting disorders, abnormal drowsiness, repeated vomiting ( $\geq 3$  episodes), or a dangerous mechanism of injury such as a high-speed road traffic accident or a fall from height greater than one meter.

### **Scandinavian Neurotrauma Committee (SNC) (pediatric-) guidelines from 2016**

The SNC-16 is a tool and a comprehensive clinical management guideline for children and adolescents (<18 years) who present with minimal, mild, or moderate blunt head trauma within 24 hours of injury. It provides risk stratification, CT indications, observation recommendations, and discharge advice, primarily applicable in clinical settings preferring observation as an alternative to immediate radiological (CT-) scanning. Despite the committee's name, coworkers from Sweden, Norway, Denmark, Iceland and Finland constructed the document.

Unlike PECARN, which is only a CT-decision rule, SNC-16 is a *full management guideline* designed for Nordic healthcare systems where observation is easily available and radiation exposure is minimized.

SNC-16 divides children into moderate, mild high-risk, mild medium-risk, and minimal (low-risk) categories based on symptoms, neurological status, mechanism, and specific pediatric risk factors (especially in children <2 years, where scalp hematomas and irritability are important).

- **Moderate** head injury (GCS 9–13): always requires CT and admission.
- **Mild high-risk:** features such as focal deficits, suspected fracture, GCS 14, or seizures → CT or at least 24 h observation.
- **Mild medium-risk:** brief LOC, amnesia,  $\geq 2$  vomiting episodes, severe headache, behavioral change, shunt, coagulopathy, or age <2 with concerning signs →  $\geq 12$  h observation (CT only if multiple risk factors or deterioration).
- **Low-risk:** normal exam, GCS 15, no concerning symptoms → short observation (~6 h) and discharge with instructions.

In practice, SNC-16 leads to fewer CT scans and more structured observation compared to PECARN, reflecting Scandinavian priorities of safety and low radiation exposure.

| Rules                    | Inclusion Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Exclusion Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CT Indications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>PECARN</b>            | Children <18 years, blunt head trauma, GCS 14-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Trivial injury, penetrating trauma, neurological disorders, prior imaging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GCS <15, altered mental status, or palpable skull fracture.<br>Depending on age, observation or CT scan should be considered if: Aged <2: non-frontal scalp hematoma, LOS ≥ 5 sec, severe mechanism of injury, or abnormal behavior reported by parents. Aged ≥ 2: repeated vomiting, LOC, severe headache, or severe mechanism of injury.                                                                                                                                                                                       |
| <b>NEXUS II</b>          | Blunt head trauma, GCS ≥14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | None explicitly stated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Evidence of skull fracture, scalp hematoma, neurologic deficit, abnormal alertness, abnormal behavior, repeated vomiting                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>NICE Guidelines</b>   | Children <16 years with head injury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Superficial facial injuries without head trauma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GCS <14, seizure, skull fracture, vomiting, LOC >5 min, bleeding disorders, dangerous mechanism                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>SNC-16 guidelines</b> | <p><b>Children with minor and moderate blunt head trauma</b> who meet the following criteria:</p> <p><b>Age:</b> Children aged <b>0 to 17 years</b> (inclusive).</p> <p><b>Injury Type:</b> <b>Blunt head trauma</b> (non-penetrating injury).</p> <p><b>Severity:</b> Initial GCS in the ED between <b>9 and 15</b>. This covers the range of:</p> <p><b>Minimal Head Injury</b><br/>GCS 15 with no risk factors</p> <p><b>Mild Head Injury</b><br/>GCS 14-15 with risk factors</p> <p><b>Moderate Head Injury</b> GCS 9-13</p> <p><b>Time Since Injury:</b> Presentation to the ED within <b>24 hours</b> of the injury.</p> | <p><b>Severe Head Trauma:</b> Patients presenting with a <b>GCS score of 8 or below</b>.</p> <p><b>Penetrating Head Injury:</b> Injuries caused by objects penetrating the skull.</p> <p><b>Suspected Non-Accidental Injury (Child Abuse):</b> Cases where the mechanism of injury is inconsistent with the findings or child abuse is suspected.</p> <p><b>Pre-existing Neurological/Neurotrauma Condition:</b> Patients whose clinical picture might be significantly complicated or explained by prior conditions, such as: Pre-existing coagulopathy (though patients on anticoagulants due to an existing medical condition are sometimes addressed within the guideline as a risk factor). Pre-existing shunts or known intracranial pathology.</p> <p><b>Inclusion in another study</b> that would affect their management/treatment in the ED.</p> | <p>Categorizes risk factors into low, intermediate, and high risk, which dictate the recommendation for CT or observation.</p> <p>Mandatory CT is indicated if GCS is 13 or less, or, in case of GCS 14-15 in case of posttraumatic neurological deficit, posttraumatic seizure, clinical signs of skull base fracture/depressed skull fracture.</p> <p>CT <b>OR</b> observation is indicated in case of GCS14, loss of consciousness over 1min, presence of a Coagulation Disorder or Anticoagulation/Antiplatelet Therapy.</p> |

## References

### PECARN:

Kuppermann N, Holmes JF, Dayan PS, Hoyle JD, Jr., Atabaki SM, Holubkov R, et al. Identification of children at very low risk of clinically-important brain injuries after head trauma: a prospective cohort study. Lancet. 2009;374(9696):1160-70.

### NEXUS II:

Oman JA, Cooper RJ, Holmes JF, Viccellio P, Nyce A, Ross SE, et al. Performance of a decision rule to predict need for computed tomography among children with blunt head trauma. Pediatrics. 2006;117(2):e238-46.

Babl FE, Oakley E, Dalziel SR, Borland ML, Phillips N, Kochar A, et al. Accuracy of NEXUS II head injury decision rule in children: a prospective PREDICT cohort study. Emerg Med J. 2019;36(1):4-11.

### NICE:

Excellence. NIHaC. Head Injury: Assessment and Early Management. National Institute for Health and Clinical Excellence: Guidance. 2023. Scandinavian Neurotrauma Committee; SNC-16: 10.1186/s12916-016-0574-x

## Background

Minor head trauma among children and adolescents is a common reason for seeking medical care. The trauma is classified as mild in at least 90%. A recent Swedish study reported an incidence of 1,815 visits to emergency departments (EDs) per 100,000 children per year due to head trauma [1]. There are currently approximately 2,2 million individuals under the age of 18 in Sweden, corresponding to almost 40,000 ED visits annually after head trauma.

The incidence of clinically important traumatic brain injuries (ciTBI) is low. In a study from 25 North American EDs in 2004-06, including 42,412 children  $\leq 18$  years who presented within 24 hours of head trauma, the prevalence of ciTBI was estimated to 376 (0.9%) [2]. Neurosurgical interventions were required in 60 (0.1%) patients. The Swedish study included 5,060 paediatric patients who attended EDs due to isolated head trauma in 2016 [1]. CT scans were performed in 273 (5.4%), and intracranial injury (ICI) was detected in 33 (0.7%) patients. Four patients (0.08%) required a neurosurgical intervention.

Scandinavian Neurotrauma Committee (SNC) provide guidelines for the management of minor and moderate head trauma [3]. Patients with GCS 9-13 must be referred for CT head immediately, whereas patients with mild head trauma and GCS 14-15 are categorised into a high, medium- and low-risk group for intracranial injury. For patients with risk factors in the high- or medium-risk group, either CT or in-hospital observation of  $\geq 12$  or  $\geq 6$  hours is recommended, while patients with GCS 15 and no risk factors may be discharged. The recommendations aim to balance medical safety, i.e. ruling out significant injuries, against the risk of exposing young individuals to ionising radiation.

Specific blood-based biomarkers have been proposed to help manage the large number of patients with minor head trauma, the low frequency of significant findings, and the drawbacks associated with CT exposure; however, to date, the evidence has been found to be insufficient. The aim of this systematic review was therefore to identify and critically appraise studies investigating the diagnostic accuracy of serum biomarkers compared with intracranial injury detected by head CT in patients under 18 years of age presenting after mild head trauma and GCS 14-15.

## Methods

This systematic review was preregistered on [www.researchweb/fou/orebroll](http://www.researchweb/fou/orebroll) July, 5 2025/ ID number 285309 [4].

### Research question:

What is the diagnostic accuracy of serum biomarkers in patients under 18 years of age presenting with a GCS score 14-15 after head trauma, compared with head CT?

#### PIROS

|                       |                                                                                                                                                                                                                     |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Population</b>     | Patients younger than 18 years presenting with Glasgow Coma Scale 14-15 after head trauma                                                                                                                           |
| <b>Index test</b>     | Serum biomarkers within 24 hours of trauma, (within 6 hours for S100B)                                                                                                                                              |
| <b>Reference test</b> | Head CT within 24 hours of trauma                                                                                                                                                                                   |
| <b>Outcome</b>        | Diagnostic performance of each biomarker<br>TP, FP, TN, FN. Sensitivity, specificity, positive and negative predictive values<br>Area under the receiver operating characteristic curve (AUC).<br>Likelihood ratios |
| <b>Study design</b>   | Prospective cross-sectional studies                                                                                                                                                                                 |

### Inclusion criteria

- Studies must report results for patients with GCS 14, GCS 15, or GCS 14-15
- Studies must report outcome of at least one biomarker and CT scan of the same individual
- Blood samples for S100B must have been drawn within 6 hours of head trauma
- CT scans must have been performed in reasonably close proximity to the blood draw, and no later than 24 hours after the head trauma
- No restrictions by country / healthcare providers
- Only studies published in English

### Exclusion criteria

- Studies that do not report data, or separate data, for patients younger than 18 years of age
- Studies that do not report outcome of blood draws for S100B within 6 hours of head trauma, or do not report them separately
- Studies that do not report on the outcome of biomarkers in relation to CT scans, e.g. using clinical surveillance as the reference standard
- Studies that report on biomarkers in urine, saliva, or cerebrospinal fluid
- Other types of publications except primary diagnostic accuracy studies, i.e. any type of reviews, letters, case reports, conference abstracts, editorials

## **Literature search**

Two librarians at the Medical Library, Örebro university developed the search strategies in collaboration with one of the reviewers (ML). Medline, Embase and the Cochrane Library were search from inception to May 30, 2025. The search strategy is presented in Appendix 1.

## **Selection**

An initial screening for relevance based on titles and abstracts including all publications identified from the literature search was conducted by three independent reviewers (LB, LO, ML). Any publication selected by either reviewer proceeded to the next level. At this stage, full-text versions of all selected publications were retrieved and assessed independently for relevance by the reviewers (LB, LO, ML). Any remaining discrepancies was resolved through consensus discussions. In addition, a thorough search for cross-references in relevant systematic reviews and identified relevant primary studies was conducted and selected in the same way (ML, LB).

## **Risk of bias assessment**

Two reviewers (ML, LO) independently assess the risk of bias for all relevant studies using the QUADAS-2 tool [5]. Any discrepancies were resolved through discussion until consensus was reached, or by consulting a third reviewer (LB). The findings were presented in a risk of bias diagram.

## **Statistical review**

Statistical aspects of the studies, including sample size calculation, choice of statistical methods, reporting and interpretation were reviewed separately (RK).

## **Integrity**

All authors of the finally included studies were searched for in Retraction Watch database [6]. Details in study protocols were compared with the corresponding publication. Status of the publishing journals of included studies was obtained [7].

## **Conflict of interest**

Financial or other types of conflict of interest declared by the authors, as well as funding or any other support (scientific writing, statistics) was extracted and tabulated.

## **Extraction of data from included studies**

Relevant studies with unacceptably high risk of bias did not proceed to data extraction, whereas relevant studies with low to high risk of bias were included. Data on basic characteristics, such as inclusion criteria, study population, setting, specific criteria for head CT, timing and biomarker(s) investigated were extracted by one reviewer (ML) and double-checked by another (LB). All relevant data on outcomes were extracted in the same manner, including reported sensitivity, specificity as well as positive and negative predictive values, in relation to the thresholds applied in the studies.

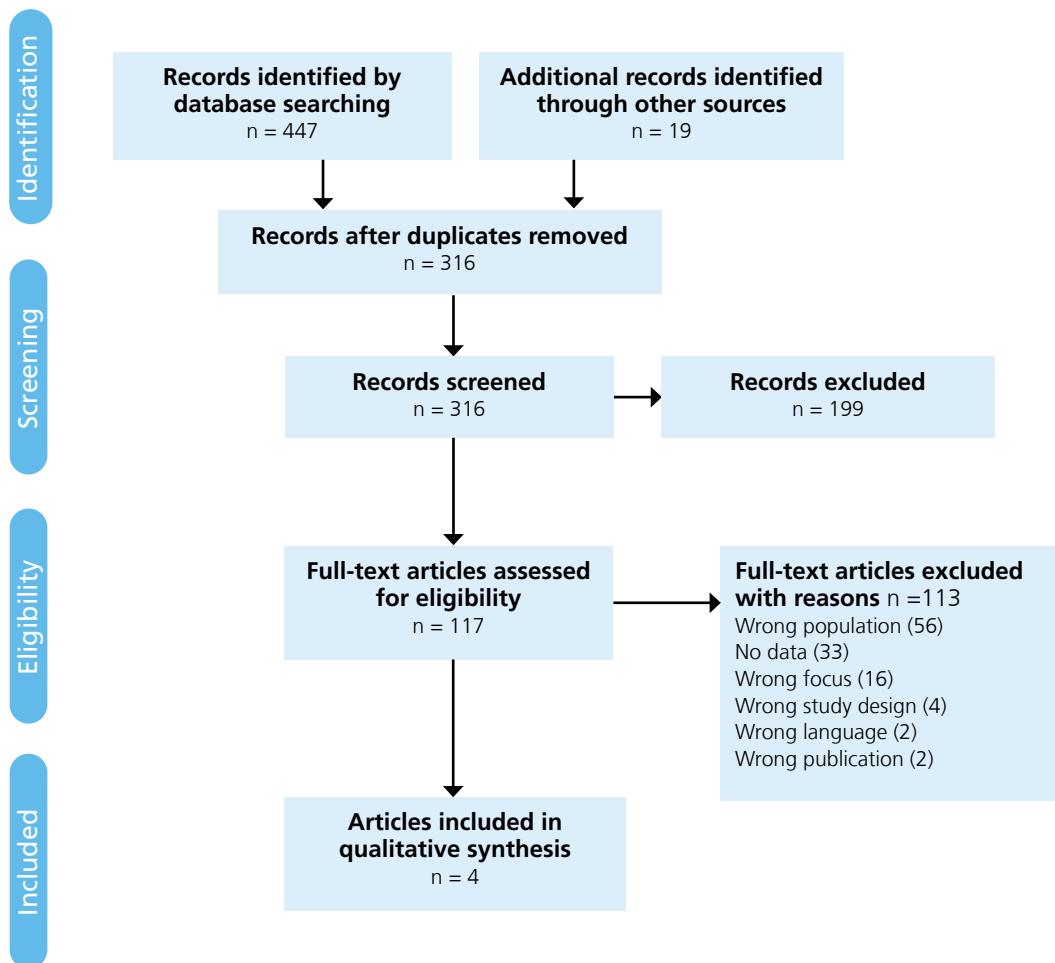
## **Analysis**

When sufficient data were available, 2 x 2 tables were constructed to calculate TP, FP, TN, FN, positive and negative predictive values as well as likelihood ratios for positive and negative outcomes of the tests.

If deemed appropriate, and data from at least three studies would be available, a meta-analysis for each biomarker using a random-effects model was planned. If insufficient data, or pooling was found inappropriate for other reasons, such as clinical heterogeneity, a narrative synthesis was planned instead.

## **GRADE**

In case a meta-analysis was found appropriate, a GRADE assessment would be presented.


## **Ongoing studies**

Ongoing studies were searched for in Clinicaltrials.gov [8], Clinical trials EU [9], and ISRCTN [10], and ongoing systematic reviews were searched for in PROSPERO [11].

## Results

### Assessment of relevant studies

The literature search yielded 447 records, with 19 additional studies identified via cross-references. After deduplication by librarians, 316 unique records remained. A total of 117 studies were read in full-text and four were found relevant (Fig. 1). Excluded studies with main reason for exclusion are in Appendix 2.



**Figur 1** Study flow chart

Basic characteristics of relevant studies are presented in Table 1. The studies were published between 2015 and 2024; two were conducted in Europe, and two by the same research group in Iran. All participants were identified at pediatric EDs of university hospitals. For the study by Chiollaz et al [12], 302 patients were included but 43 had CT and blood draw within 6 hours. Seven of 43 study participants had head trauma as part of multitrauma; any such information was not reported for the other three studies. For the study by Simon-Pimmel [13], 280 patients had a head CT but 109 had a blood draw within 6 hours.

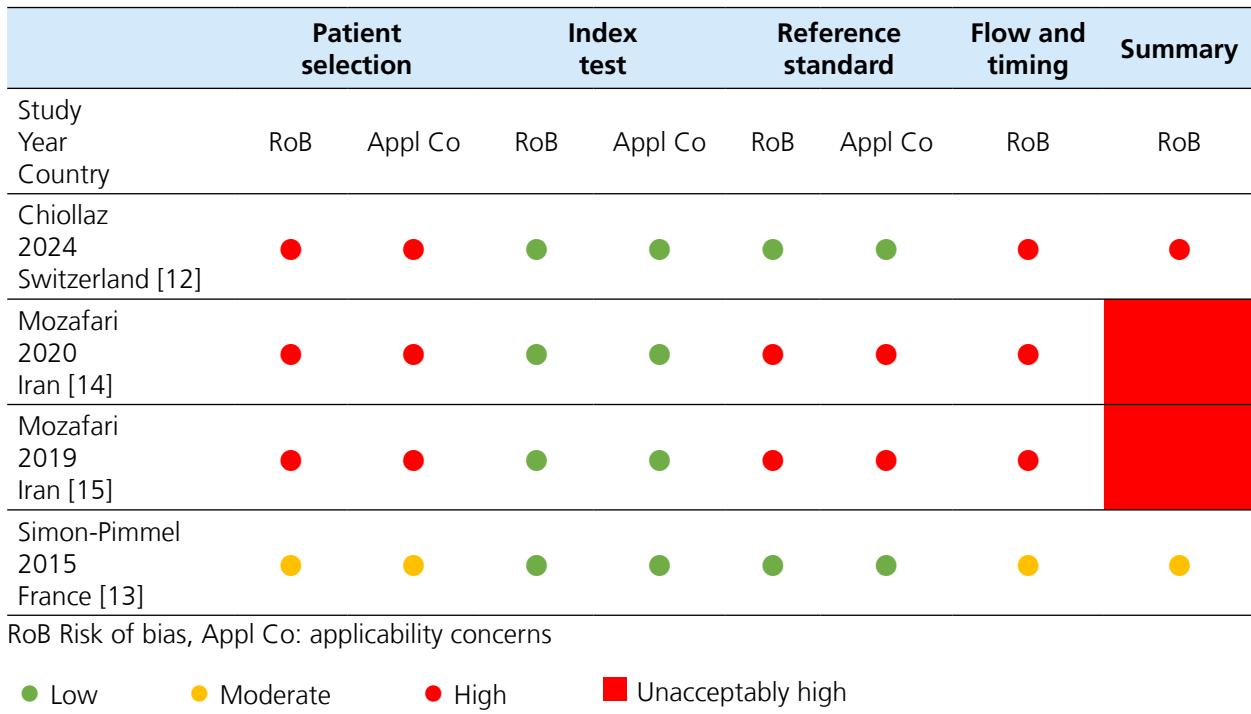
**Table 1** Basic characteristics of studies identified as relevant (n= 4)

| Author<br>Year<br>Country                     | N<br>Median age<br>Female                                  | Inclusion<br>period      | Setting                                                                            | Inclusion<br>criteria                                   | GCS<br>15 | GCS<br>14 | Symptoms at<br>inclusion n (%)                                                                | CT<br>criteria                                                     | Biomarker                                                                                                                                                                           |                        |
|-----------------------------------------------|------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------|-----------|-----------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Chiollaz<br>2024<br>Switzerland<br>[12]       | (302)<br><b>43*</b><br>36 CT-: 6.8<br>7 CT+: 10.1<br>F 37% | Oct 2020-<br>Feb 2023    | Switzerland<br>9 university<br>hospitals<br>5 in<br>Switzer-<br>land<br>4 in Spain | ≤16 yrs,<br>head trauma <24 h,<br>GCS 14-15             | 32        | 11        | Headache<br>Amnesia<br>LOC<br>Confusion<br>Vomiting<br>(>3 episodes)<br>Convulsion<br>Vertigo | 10 (23)<br>10 (23)<br>9 (21)<br>7 (16)<br>5 (12)<br>2 (5)<br>1 (2) | No interference<br>by the study in<br>medical deci-<br>sions such as to<br>perform a CT                                                                                             | S100B<br>GFAP<br>HFABP |
| <b>CT pos:</b><br><b>31</b>                   |                                                            |                          |                                                                                    |                                                         |           |           |                                                                                               |                                                                    |                                                                                                                                                                                     |                        |
| Mozafari<br>2020<br>Iran [14]                 | Mean 8 9 yrs<br>F 29%                                      | 2016                     | 1 university<br>hospital                                                           | 6 mon - 18 years,<br>incident within 6 h,<br>GCS 14 -15 | 39        | 23        | Headache<br>Vertigo<br>Confusion                                                              | 33 (53)<br>10 (16)<br>2 (3)                                        | Brain CT accor-<br>ding to latest<br>guidelines                                                                                                                                     | NSE                    |
| <b>CT pos:</b><br><b>20</b><br>9 yrs<br>F 20% |                                                            | April-<br>Sept<br>2017   | 1 university<br>hospital                                                           | 6 mon - 18 years,<br>incident within 6 h,<br>GCS 14-15  | 23        | 17        | Headache<br>Nausea/vomiting<br>Confusion<br>Vertigo<br>Functional neurological<br>disorder    | 21 (52)<br>23(58)<br>3 (8)<br>3 (8)<br>1 (3)                       | Ind. for CT scan<br>and no history<br>of alcohol/drug<br>abuse, neuro-lo-<br>gical disease,<br>absence of sev-<br>re traffic injury/<br>multiple trauma,<br>abs-ence of<br>melanoma | S100B                  |
| <b>CT neg:</b><br><b>20</b><br>7 yrs<br>F 40% |                                                            |                          |                                                                                    |                                                         |           |           |                                                                                               |                                                                    |                                                                                                                                                                                     |                        |
| Simon-<br>Pimmel<br>2015<br>France<br>[13]    | (280)<br><b>109*</b><br>6 yrs<br>F 36%                     | Sept 2012-<br>April 2014 | 1 university<br>hospital                                                           | < 16 yrs,<br>incident within 6 h,<br>GCS 14-15          | 56        | 53        | Headache<br>LOC<br>Nonfrontal<br>hematoma<br>Vomiting                                         | 16 (15)<br>15 (14)<br>13 (12)<br>13 (12)                           | According to<br>PECARN<br>clinical<br>decision rule                                                                                                                                 | S100B                  |

GFAP: Glial fibrillary acid protein; HFABP: Heart fatty acid binding Protein; NSE: Neuron specific enolase; LOC: Loss of consciousness; S100B: S100 calcium-binding protein B.

\*number of patients that had both head CT and biomarker within time limits according to our PICO.

The study by Chiollaz [12] is based on two cohorts of children exposed to mTBI in Spain and Switzerland. The cohorts were preregistered in two separate study protocols on ClinicalTrials; the Spanish cohort focused on HFABP [16], and the Swiss cohort on biomarkers without any further specification [17]. No preregistration was found for the other three studies.


## Risk of bias assessment

The study by Chiollaz [12] was running at nine different EDs during two or three years. In all, 302 patients with GCS 14-15 were recruited, and 222 of them had blood sampling for S100B within 6 hours and of these, 43 patients had a CT scan. The study did not interfere in the decision to perform a CT. This means most included patients did not receive the reference standard because this decision was at the discretion of the attending physician. It is not stated whether the index test was conducted without knowledge of the reference test, but all CT scans were reviewed by a radiologist blinded for all other information (Figure 2).

The two studies by Mozafari et al published in 2020 [14] and 2019 [15], respectively, claim the studies were conducted according to the STARD guidelines. However, in both studies an equal number of patients with and without intracranial injuries on CT were included (20/20 and 31/31). There is no explanation on how these participants were selected. Based on this unclear selection, we find both studies are associated with an unacceptably high risk of bias. According to the 2019 Mozafari study, the CT scans were independently interpreted by a consultant neurologist. In the study from 2020, it is stated there were two independent readings of the CT scan by an emergency specialist and a neuroradiologist. Neither of the studies described the brain injuries detected on CT scans.

The fourth study by Simon-Pimmel [13] is based on the PECARN (Pediatric Emergency Care Applied Research Network) clinical decision rule to classify children according to their risk of clinically important TBI (ciTBI) [18]. These include the following: death from TBI, neurosurgical intervention for TBI, intubation for more than 24 h for TBI, or hospital admission of 2 nights or more for TBI on cranial CT. However, in spite of the PECARN rule, the rate of CT use continued to be high, and the aim of the study was to investigate whether adding S100 B to the clinical assessment could help reduce the use of CT.

Only children who underwent a CT scan according to the PECARN rule were eligible for the study by Simon-Pimmel, ie this is a selected group. Out of 2,967 children with GCS  $\geq 14$  who visited the ED during the study period, 280 patients who underwent cranial CT were identified. Among these 280, 125 were missed, because of insufficient sampling, or presenting more than 6 hours after trauma. For another 44 children, the blood samples were collected more than 6 hours after the trauma and two children had pre-existing neurological disorders. Finally, 109 out of the 280 (39%) who underwent CT scan were included. The impact of this selection is unclear. It is also worth noting that we were not able to identify any preregistration or published protocol for this study.



**Figure 2** Risk of bias assessment of relevant studies

## Statistical review

No sample size calculation is reported in the study by Chiollaz, and the adjustment for multiple testing is unclear. This is important to avoid false positive results. A 95% confidence interval was used to calculate the sample size in the study by Simon-Pimmel, but the source of the values used for this interval is unclear. It is not clear whether the researchers adjusted for multiple testing. An error was found in their flowchart reporting 16 TBI, whereas the text says 17, and 17 was confirmed by email from the first author to be the correct number in October, 2025.

**Table 2** Review of statistical aspects of relevant studies (except for those of unacceptably high risk of bias)

| Author<br>Year            | Sample size calculation                                | Analysis | Reporting                                                                                                                     | Interpretation of<br>statistical outcomes |
|---------------------------|--------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Chiollaz<br>2024 [12]     | Missing                                                | OK       | Multiplicity correction is not mentioned                                                                                      | OK                                        |
| Simon-Pimmel<br>2015 [13] | No reference for choice of effect size and width of CI | OK       | Multiplicity correction is not mentioned<br>Figure 2 shows 16 TBI, but the author confirmed by email 17 is the correct number | OK                                        |

## Integrity

All authors of the relevant studies were checked in Retraction Watch Database. One of 22 authors in the study by Chiollaz et al had two studies retracted in 2024. No author of the other studies was identified in this database.

## Conflict of interest

No financial conflicts of interest were reported in the studies (Table 3).

**Table 3** Financial conflict of interest of interest and funding

| Author, Year<br>Country            | Number<br>of authors | Financial COI in relation to<br>sponsor N (%) | Funding                                                                                   |
|------------------------------------|----------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------|
| Chiollaz, 2024<br>Switzerland [12] | 22                   | The authors declare no COI.                   | A private grant from Hôpitaux Universitaires de Genève for its first year of recruitment. |
| Mozafari, 2020<br>Iran [14]        | 4                    | The author declare they have no COI.          | Support for thesis at Ahvaz Jundishapur University                                        |
| Mozafari, 2019<br>Iran [15]        | 6                    | NR                                            | Support for thesis from Ahvaz Jundishapur University                                      |
| Simon-Pimmel,<br>2015, France [13] | 8                    | The authors report no COI.                    | NR – the authors did not describe any source of funding, external or internal             |

## Journals

None of the studies were published in journals of the highest quality according to “Norwegian list”. Two of them were not included in the list.

**Table 4** Publishing journals of the relevant studies

| Author, Year<br>Country            | Journal                                                 | Type of<br>journal | DOAJ*      | Predatory<br>reports Cabells | Norwegian<br>list** |
|------------------------------------|---------------------------------------------------------|--------------------|------------|------------------------------|---------------------|
| Chiollaz, 2024<br>Switzerland [12] | Neurotrauma Reports                                     | Open<br>Access     | Yes        | No                           | 1                   |
| Mozafari, 2020<br>Iran [14]        | Open Access Emergency<br>Medicine                       | Open<br>Access     | Yes        | No                           | Not listed          |
| Mozafari, 2019<br>Iran [15]        | New Zealand Journal<br>of Medical Laboratory<br>Science | Open<br>Access     | No         | No                           | Not listed          |
| Simon-Pimmel, 2015<br>France [13]  | Shock                                                   | Hybrid             | Irrelevant | No                           | 1                   |

\* Directory of Open Access Journals, only relevant for these journals

\*\* Norwegian list: 0 not approved; 1 the majority of legitimate, peer-reviewed scientific journals; 2 leading scientific publication channels.

## Summary

Four studies met our PICO and inclusion criteria. Two of them were found to have an unacceptably high risk of bias and lacked a description of critical aspects of their methodology. Based on this assessment, we found these studies would not contribute to clarifying the evidence base for our research question.

For the two remaining studies by Chiollaz [12] and Simon-Pimmel [13], bias of selection was also more or less problematic. However, given the low prevalence of intracranial injury among children presenting with GCS 14-15 to EDs after head trauma, it is hardly possible to design a study where all children in this group are referred for CT. In the study by Simon-Pimmel, selection for CT was deservingly based on a clear clinical rule, in all, we found that both studies contribute to the current state of knowledge. This means that the evidence presented in the next section is based on in total 152 study participants: 88 with GCS 15 and 64 with GCS 14 (Table 1). Moreover, due to heterogeneity in CT utilisation criteria as outlined above, the findings will only be presented descriptively and without any direct comparison.

## Results reported in the included studies

### **Biomarker S100B**

Both studies, by Chiollaz [12] and by Simon-Pimmel [13], reported findings related to S100B (Table 2).

Chiollaz et al had no prespecified cutoff values whereas the study by Simon-Pimmel used age-specific thresholds for pre-specified cut-off values for 0-3 months, 4-9 months, 10-24 months and >24 months.

The study by Chiollaz reported on 43 patients; seven had traumatic brain injury and 36 had a normal CT scan outcome (Table 5). The concentrations of S100B ng/L in patients with injuries was 191( $\pm$  198) versus 92.4 ( $\pm$  80.5) in patients with no injuries. When the cutoff was set at 100% sensitivity (S100B 43 ng/L), the specificity was 34%. Area under the curve at the same cutoff was 67% (95% CI 43-90). Likelihood ratios for positive and negative tests are calculated and presented in Appendix 3.

The study by Simon-Pimmel reported on 109 patients who underwent CT and had serum samples collected within 6 hours. According to the PECARN criteria, these patients were classified into high-, intermediate, and low-risk groups for ciTBI, with 60, 47, and 2 patients respectively. Of these, 17 had TBI (Table 5). We extracted data for all 109 included patients of all three PECARN risk groups in a 2 x 2 table (Appendix 3, Table 2a), and the findings translate into a sensitivity for TBI of 76%, and a specificity of 63% (Table 5).

In patients with high-risk of ciTBI; 12 of 30 patients with positive S100B had TBI, and 3 of 30 with negative S100B had TBI. This translates to a sensitivity for TBI of 12/15 (0.8) for S100B, and a specificity of 0.6 (Appendix 3, Table 2b). In patients with intermediate risk of ciTBI; one of 17 patients with positive S100B had TBI, and one of 30 patients with negative S100B had TBI. This translates to a sensitivity of 1 out of 2 for S100B, and a specificity of 0.64 (Appendix 3, Table 2c). For the 2 patients with low risk of ciTBI; both had a negative S100B, and none of them had TBI on the CT scan.

Likelihood ratios for positive and negative tests for all PECARN groups are presented in Appendix 3. The highest LR (+) was 2.05, and the lowest LR (-) 0.33. The number of CT used and the proportion of TBI missed at different scenarios on the use of S100B in the PECARN groups are outlined in Appendix 3, Table 3.

**Table 5** Distribution of intracranial injuries and accuracy of S100B as reported in included studies

| Author<br>Year<br>Country               | Outcome of cranial CT                                                                                                                                        |                                                     | Outcome of S100B                                     |                |      |      |       |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|----------------|------|------|-------|
|                                         | Traumatic brain injury                                                                                                                                       | Normal                                              | Sensitivity %                                        | Specificity %  | PPV% | NPV% | AUC % |
| <b>Distribution:</b>                    |                                                                                                                                                              |                                                     |                                                      |                |      |      |       |
| Chiollaz<br>2024<br>Switzerland<br>[12] | Intracranial hemorrhage<br>or contusion<br>Pneumocephalus<br>Diastasis of the skull<br>Midline shift of<br>intracranial contents<br>Depressed skull fracture | 5 (71%)<br>5 (71%)<br>2 (29%)<br>1 (14%)<br>1 (14%) | <b>100% sensitivity<br/>at threshold 43<br/>ng/L</b> | 34             | NR   | NR   | 67    |
| Subtotal                                | 7                                                                                                                                                            | 36                                                  |                                                      |                | -    |      |       |
| <b>Distribution:</b>                    |                                                                                                                                                              |                                                     |                                                      |                |      |      |       |
| Simon-<br>Pimmel<br>2015<br>France [13] | Intracranial contusion<br>Intracranial hemorrhage<br>Diastasis of the skull<br>Pneumocephalus<br>Depressed skull fracture<br>Total: 17 patients              | 1 (6%)<br>10 (60%)<br>2 (11%)<br>3 (17%)<br>1 (6%)  | 76<br>(13/17)*                                       | 63<br>(58/92)* | NR   | NR   | NR    |
| Subtotal                                | 17                                                                                                                                                           | 92                                                  |                                                      |                | -    |      |       |
| <b>Total</b>                            | <b>24</b>                                                                                                                                                    | <b>128</b>                                          |                                                      |                | -    |      |       |

NR: not reported, AUC: area under the curve

\*numbers extracted from Figure 2 in the study by Simon-Pimmel et al.

Corresponding 2x2 table is in Appendix 3, Table 2a.

### **Biomarkers GFAP and HFABP**

The biomarkers GFAP and HFABP were only investigated in the study by Chiollaz et al [12].

Mean value of GFAP (ng/L) for patients with a CT showing TBI was 1820 ( $\pm$  2,460), and for patients with a negative CT it was 737 ( $\pm$  967) ( $p= 0.084$ ). Mean value of HFABP (ng/L) for patients with a positive CT showing TBI was 5470 ( $\pm$  3,960), and for patients with a negative CT it was 4,710 (5,280) ( $p= 0.34$ ). When sensitivity was set at 100%, the corresponding specificity was 39% for GFAP, and 37% for HFABP (Table 6). Specificity for combinations of the biomarkers GFAP, HFABP and S100B when sensitivity was set at 100% was estimated to 57-68%.

**Table 6** Specificity when threshold was set for 100% sensitivity for GFAP and HFABP and combinations

| Author<br>Year<br>Country             | Biomarker     | Threshold for<br>100% sensitivity (ng/L) | Specificity % | AUC % |
|---------------------------------------|---------------|------------------------------------------|---------------|-------|
| <b>Single biomarker</b>               |               |                                          |               |       |
| Chiollaz, 2024<br>Switzerland<br>[12] | GFAP          | 204                                      | 39            | 71    |
|                                       | HFABP         | 2457                                     | 37            | 62    |
| <b>Combination of biomarkers</b>      |               |                                          |               |       |
|                                       | GFAP / HFABP  | 214 / 2457                               | 68            | NR    |
|                                       | GFAP / S100B  | 214 / 44                                 | 66            | NR    |
|                                       | HFABP / S100B | 2457 / 44                                | 57            | NR    |

AUC: area under the curve

## Summary of Findings

S100B

| Outcome                             | Number of studies<br>Participants (n) | RoB           | Directness | Consistency                                         | Precision     | Summary                                                                                             |
|-------------------------------------|---------------------------------------|---------------|------------|-----------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------|
| Diagnostic performance of biomarker | 2 (152)                               | High/moderate | Yes        | Inconsistent findings                               | Small numbers | Insufficient data; any conclusion not possible.                                                     |
| Area under ROC curve                | 1 (43)                                | High          | Yes        | Only one study                                      | Small numbers | Insufficient data; any conclusion not possible.                                                     |
| Likelihood ratios                   | 2 (152)                               | High/moderate | Yes        | LR+ and LR- both insufficient for clinical purposes |               | Two small studies show the discriminatory abilities of S100B is insufficient for clinical purposes. |

## Ongoing studies

### **Primary studies**

ClinicalTrail.gov was searched 2025-10-16 and the BRAINI2 study (Blood Biomarkers to Improve Management of Children With Traumatic Brain Injury) was found, registered in June 2022 ([Study Details | NCT05413499 | Blood Biomarkers to Improve Management of Children With Traumatic Brain Injury | ClinicalTrials.gov](#)). A protocol was published in May 2024 [19]. The aim is to conduct a multicentre study in France, Spain and Switzerland and include 2,880 patients younger than 18 years. One purpose is to assess the performance of an automated test combining GFAP and UCH-L1 developed by bioMérieux (the VIDAS® TBI) in 630 children with mild TBI (GCS 13-15) compared to head CT. The status of the study is now presented as unknown on the website, and we had no reply to our email request.

[Clinical Trials in the European Union - EMA](#) and [ISRCTN Registry](#) were searched 2025-12-10 but no relevant protocol was identified on these websites.

### **Systematic reviews**

A systematic review was registered on [PROSPERO](#) (CRD42024588121) in 2024 by a group of radiologists in Australia. It proposes to cover S100B, GFAP, UCH-L1, NSE, and IL-6 in patients aged 0 – 18 years with mTBI, and determine sensitivity, specificity, positive and negative predictive values, and area under the curve (AUC) for these biomarkers compared to cranial CT as the reference standard. The systematic review was completed in November 2025 according to the website, but has not yet been published.

Another systematic review “Systematic review of blood-based biomarkers to exclude the presence of intracranial injuries on suspected mild traumatic brain injuries (mTBI)” was registered on [PROSPERO](#) (CRD420251051158) in May 2025. The aim is to assess the accuracy of blood-based biomarkers to predict intracranial injuries following a suspected mild TBI.

## Discussion

Two studies evaluating biomarkers vs CT findings in patients younger than 18 years of age presenting with GCS 14-15 after head trauma were included. However, the included study populations were selected because CT was performed either at the discretion of the attending physician or according to the PECARN rules. Consequently, the studies are not readily comparable, and any summarising finding of the diagnostic accuracy of biomarkers vs CT findings is not possible. The conclusion of this systematic review is therefore limited to a descriptive evaluation of the performance of the investigated biomarkers, which was found to be insufficient for clinical use.

S100B was the only biomarker investigated in both studies. One of the studies, by Chiollaz [12], reported a specificity of 34% of S100B when the sensitivity was set at 100%. The other study by Simon-Pimmel [13] proposed an integration of S100B into the clinical PECARN decision rule to and they concluded that they had showed “that combining a validated clinical decision rule (PECARN) with a validated biomarker for the management of head trauma allows a significant decrease in CT scans”. However, we find their findings rather demonstrate the risk of adding S100B to the clinical decision rule. Based on the preset threshold, the sensitivity of S100B for all 109 patients included was only 76%, and even in the high-risk group according to the PECARN rules, 3/30 (10%) patients with a negative S100B had a TBI.

We calculated positive and negative likelihood ratios based on the findings in these two studies. Likelihood ratios show the ability of any test to distinguish between patients with and without the disorder regardless of the prevalence. In none of our calculations this ability was present for S100B.

One of the excluded studies published in 2025 is of interest [20]. This is an ancillary diagnostic sub-study to the PROS100B cluster-randomised trial, including 2,078 participants at 11 centres in France published in 2024 that found no significant differences in the use of cranial CT between the groups allocated to S100B monitoring or not [21]. The aim of the substudy was to investigate the diagnostic value of GFAP and UCH-L1 in children under 16 years of age who presented with GCS 15. But nota bene, only patients whose S100B levels exceeded the threshold for head CT were included, i.e. all patients in the substudy therefore represent a selected group (i.e. 531 mTBI cases). This was not compatible with our PICO.

In the study, 68/531 patients were subjected to cranial CT. However, the outcome of the CT scans are not reported in relation to the outcome of the biomarkers, i.e. an exclusion criterion for our systematic review. Instead, the outcomes of the biomarkers are reported in relation to ciTBI. Based on in total ten patients with ciTBI, the combination of GFAP and UCH-L1 had a sensitivity of 100% and a specificity of 67%. This could be the beginning of an important improvement but the findings are still quite preliminary given the very low number of patients included in the calculations.

We only included studies on patients with GCS score of 14 and 15 at presentation. This restriction was determined by the SNC guidelines as patients with GCS 9-13 are recommended to be referred for

CT scan directly, and there is no need for biomarkers in this group. This restriction also meant that the number of potentially eligible studies decreased. If we had included studies also based on patients with GCS 13, another eight studies would have been available. We may have lost some information by not including these studies, but on the other hand it would have been very difficult to interpret the findings and disentangle the outcome for the group of GCS 14-15.

For the very same reasons we had to exclude studies by Papa et al [22], that did not present data for participants under the age of 18 and GCS 14-15 specifically on GFAP and UCH-L1 separately. This was disappointing as this combination was recently approved by FDA.

We chose outcome of CT scans as our gold standard, fully aware of that not all findings on the scans are of clinical relevance. However, CT readings are more standardised and less influenced by other factors, such as local routines, traditions, and complications related to multi-trauma, which could have been a problem if we had selected chosen a more clinically driven outcome.

There is currently strong hope among advocates for biomarkers that these may pinpoint children at high risk for intracerebral injuries [23], even if diagnostic cutoffs have not yet been fully investigated [24]. However, the impact of the low prevalence of traumatic brain injury in the paediatric population, and even lower for TBI that requires neurosurgical interventions, means anything but at very high specificity will affect the positive predictive value of any biomarker. For instance, at a prevalence of 1%, e.g. as for intracranial injury, increasing the specificity of a test from 33% to 66% will only increase the PPV from 1.5% to 3%. It means that the overwhelming majority of children with a positive biomarker will have a negative CT scan. The impact of such a low prevalence, and the relation with specificity and PPV, is outlined in Appendix 4.

In conclusion, there is currently no convincing evidence favouring the use of biomarkers to guide the use of CT among patients under the age of 18 years after mild head trauma. Adding biomarkers to the clinical pathway may even risk increasing the numbers of patient that will be exposed to radiation.

We understand it would be impossible, or rather it would be medically incorrect to aim for zero head CT in patients under the age of 18 years who present with GCS 14-15 after head trauma. The actual use of head CT in this group must therefore be meticulously investigated in order to understand the magnitude of the clinical problem of too many head CT that biomarkers are intended to solve (see Statistics from Region Örebro län).

## References

1. Al Mukhtar A, Bergenfeldt H, Edelhamre M, Vedin T, Larsson PA, Oberg S. The epidemiology of and management of pediatric patients with head trauma: a hospital-based study from Southern Sweden. *Scand J Trauma Resusc Emerg Med*. 2022;30(1):67. Epub 20221209. doi: <https://10.1186/s13049-022-01055-9>. PubMed PMID: 36494828; PubMed Central PMCID: PMCPMC9733190.
2. Kuppermann N, Holmes JF, Dayan PS, Hoyle JD, Jr., Atabaki SM, Holubkov R, et al. Identification of children at very low risk of clinically-important brain injuries after head trauma: a prospective cohort study. *Lancet*. 2009;374(9696):1160-70. Epub 20090914. doi: [https://10.1016/S0140-6736\(09\)61558-0](https://10.1016/S0140-6736(09)61558-0). PubMed PMID: 19758692.
3. Astrand R, Rosenlund C, Unden J, Scandinavian Neurotrauma C. Scandinavian guidelines for initial management of minor and moderate head trauma in children. *BMC Med*. 2016;14:33. Epub 20160218. doi: <https://10.1186/s12916-016-0574-x>. PubMed PMID: 26888597; PubMed Central PMCID: PMCPMC4758024.
4. Li M, Breimer L, Olsson L. Preregistration: Systematic Review of the Diagnostic Accuracy of Serum Biomarkers Compared with Head CT in Paediatric Mild Traumatic Brain Injury (GCS 14-15): Region Örebro County; 2025 [cited 2025 Sept, 26]. Available from: <https://www.researchweb.org/is/fourol/project/285309>.
5. Bedömning av studier om diagnostisk tillförlitlighet (Quality Assessment of Diagnostic Accuracy Studies) QUADAS-2. Available from: [https://www.sbu.se/globalassets/ebm/bedomning\\_studier\\_diagnostisk\\_tillforlitlighet\\_quadas2.pdf](https://www.sbu.se/globalassets/ebm/bedomning_studier_diagnostisk_tillforlitlighet_quadas2.pdf)
6. Retraction Watch Database [cited 2025 April 30]. Available from: [http://retractiondatabase.org/RetractionSearch.aspx?](http://retractiondatabase.org/RetractionSearch.aspx)
7. Norwegian Register for Scientific Journals SaP. Norska listan: The Norwegian Ministry of Education and Research; [cited 2025 April 30]. Available from: <https://kanalregister.hkdir.no/en>.
8. National Library of Medicine. ClinicalTrials [cited 2025 May 05]. Available from: <https://clinicaltrials.gov>
9. Clinical trials [Internet]. European Union. 2022. Available from: <https://euclinicaltrials.eu/search-clinical-trials-reports/>.
10. The UK's Clinical Study Registry. International Standard Randomised Controlled Trial Number ISRCTN [cited 2025 May 05]. Available from: <https://www.isrctn.com/>.
11. University of York: Centre for Reviews and Dissemination. International prospective register of systematic reviews Prospero [cited 2025 May 05]. Available from: <https://www.crd.york.ac.uk/prospero/>.

12. Chiollaz AC, Pouillard V, Spigariol F, Romano F, Seiler M, Ritter Schenk C, et al. Management of Pediatric Mild Traumatic Brain Injury Patients: S100b, Glial Fibrillary Acidic Protein, and Heart Fatty-Acid-Binding Protein Promising Biomarkers. *Neurotrauma Rep.* 2024;5(1):529-39. Epub 20240531. doi: <https://dx.doi.org/10.1089/neur.2024.0027>. PubMed PMID: 39071980; PubMed Central PMCID: PMCPMC11271147.
13. Simon-Pimmel J, Lorton F, Guizou N, Levieux K, Vrignaud B, Masson D, et al. Serum S100beta Neuroprotein Reduces Use of Cranial Computed Tomography in Children After Minor Head Trauma. *Shock.* 2015;44(5):410-6. doi: <https://dx.doi.org/10.1097/SHK.0000000000000442>. PubMed PMID: 26196846.
14. Mozafari J, Motamed H, Hanafi MG, Fatehifar B. The Diagnostic Value of Neuron-Specific Enolase in Children with Mild Blunt Trauma Requiring Cranial CT Scan. *Open Access Emerg Med.* 2020;12:1-5. Epub 20200113. doi: <https://dx.doi.org/10.2147/OAEM.S223179>. PubMed PMID: 32021497; PubMed Central PMCID: PMCPMC6970105.
15. Mozafari J, Fahimi MA, Mohammadi K, Barzegari H, Hanafi MG, Saki-Malehi A. The diagnostic accuracy of serum and urinary S100B protein in children and adolescents with mild traumatic brain injury. *New Zealand Journal of Medical Laboratory Science.* 2019;73(3):88-91. doi: <https://research-ebsco-com.db.ub.oru.se/c/prulw4/viewer/pdf/zqakdmo5fv?route=details>.
16. ClinicalTrials. BIOMarkers of TRAumatic Brain Injury Spain (BIOTRABIS) [cited 2025 Sept, 26]. Available from: <https://clinicaltrials.gov/study/NCT04641767?term=NCT04641767&rank=1>.
17. ClinicalTrials. BLOOD BIOMARKERS in PAEDIATRIC MTBI (t-BIOMAP) [cited 2025 Sept, 26]. Available from: <https://clinicaltrials.gov/study/NCT06233851?term=NCT06233851&rank=1>.
18. Pandor A, Goodacre S, Harnan S, Holmes M, Pickering A, Fitzgerald P, et al. Diagnostic management strategies for adults and children with minor head injury: a systematic review and an economic evaluation. *Health Technol Assess.* 2011;15(27):1-202. doi: <https://10.3310/hta15270>. PubMed PMID: 21806873; PubMed Central PMCID: PMCPMC4781048.
19. Lorton F, Lagares A, de la Cruz J, Mejan O, Pavlov V, Sapin V, et al. Performance of glial fibrillary acidic protein (GFAP) and ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) biomarkers in predicting CT scan results and neurological outcomes in children with traumatic brain injury (BRAIN-2 paediatric study): protocol of a European prospective multicentre study. *BMJ Open.* 2024;14(5):e083531. Epub 20240515. doi: <https://10.1136/bmjopen-2023-083531>. PubMed PMID: 38754888; PubMed Central PMCID: PMCPMC11097883.
20. Puravet A, Oris C, Pereira B, Kahouadji S, Gonzalo P, Masson D, et al. Serum GFAP and UCH-L1 for the identification of clinically important traumatic brain injury in children in France: a diagnostic accuracy substudy. *Lancet Child Adolesc Health.* 2025;9(1):47-56. Epub 20241202. doi: [https://10.1016/S2352-4642\(24\)00295-5](https://10.1016/S2352-4642(24)00295-5). PubMed PMID: 39637879.
21. Bouvier D, Cantais A, Laspougeas A, Lorton F, Plenier Y, Cottier M, et al. Serum S100B Le-

vel in the Management of Pediatric Minor Head Trauma: A Randomized Clinical Trial. *JAMA Netw Open*. 2024;7(3):e242366. Epub 20240304. doi: <https://10.1001/jamanetworkopen.2024.2366>. PubMed PMID: 38502126; PubMed Central PMCID: PMCPMC10951739.

22. Papa L, Mittal MK, Ramirez J, Silvestri S, Giordano P, Braga CF, et al. Neuronal Biomarker Ubiquitin C-Terminal Hydrolase Detects Traumatic Intracranial Lesions on Computed Tomography in Children and Youth with Mild Traumatic Brain Injury. *Journal of neurotrauma*. 2017;34(13):2132-40. doi: <https://dx.doi.org/10.1089/neu.2016.4806>.

23. Mannix R, Hannon M, Hennelly K, Master C, Corwin D, Badawy M, et al. Evaluating Diagnostic Strategies for Pediatric Traumatic Brain Injury: A Literature-Based Clinical Decision Analysis. *J Pediatr*. 2025:114880. Epub 20251031. doi: <https://10.1016/j.jpeds.2025.114880>. PubMed PMID: 41177397.

24. Mannix R, Borglund E, Monashefsky A, Master C, Corwin D, Badawy M, et al. Age-Dependent Differences in Blood Levels of Glial Fibrillary Acidic Protein but Not Ubiquitin Carboxy-Terminal Hydrolase L1 in Children. *Neurology*. 2024;103(3):e209651. Epub 20240710. doi: <https://10.1212/WNL.00000000000209651>. PubMed PMID: 38986044; PubMed Central PMCID: PMCPMC11238939.

## Ethical reflections

Head trauma is a very common reason why individuals might need medical evaluation. The skull is a tight connection of bones in order to protect the brain. Injuries in the head region easily initiate worries for damage to the brain.

The diagnostic process must balance on the one hand the risk for unnecessary CT-scans, with resulting exposure to radiation, and also a misuse of resources - and on the other, the risk of missing intracerebral damage which might necessitate surgical or other intervention. With the intent to reduce CT-use, biomarkers have been introduced. This systematic review examines the evidence for the assumption that they can replace, or at least complement, CT scans in case of head traumas in children and adolescents with GCS 14-15.

Only two studies were included in the final selection. A further two which reached the final selection were excluded due to unacceptably high risk of bias, but even the two finally included studies have a high risk. This is, of course, unsatisfactory and makes the ethical evaluation more difficult. The lack of evidence delays the introduction of biomarkers and raises questions about their overall usefulness for this purpose.

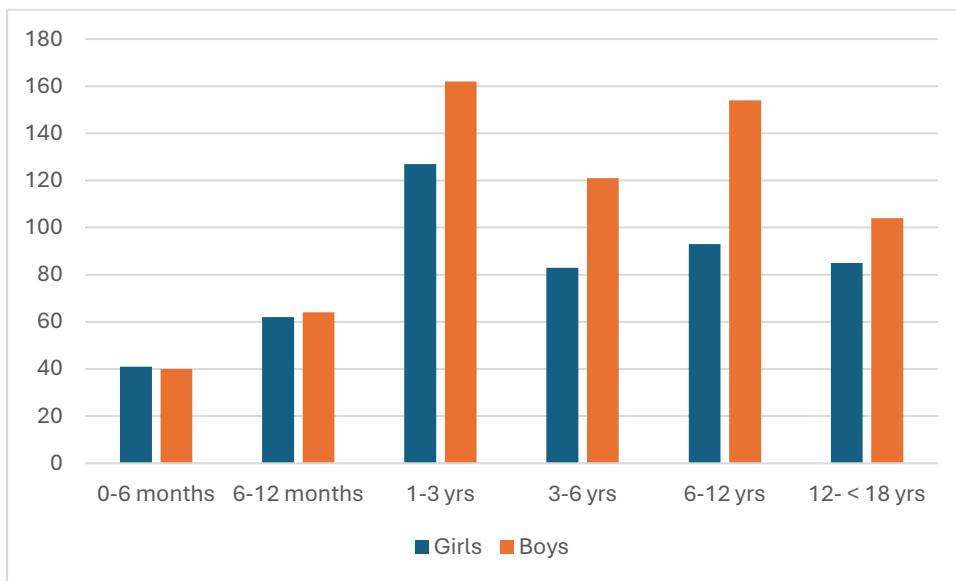
Can overseeing an intracerebral damage after a head injury mean grave risks for the patient? In the medical background, it is noted that only a very small part of those with detectable intracerebral damage need neurosurgical intervention. It remains unclear to which extent those with detectable damage but no need for operation profit from the CT-detection. Would they, undiagnosed, have healed their injuries, and at the same time avoided the risk of being traumatized by the very knowledge that "something is wrong inside the skull"?

The ethical basis for the use of these biomarkers as a replacement for, or complement to, CT-scans relies on their sensitivity, which must be very high, and their specificity, which must also be high, otherwise unacceptably many false negatives and positives will result. Missed diagnoses of intracerebral trauma are in young persons potentially dangerous, and false positives will result in unnecessary investigations, increasing the total load of ionizing radiation.

The ethical balancing which is illuminated by this report is of a kind that is often encountered in clinical ethics. Risks and benefits are weighed against each other, on often insufficient evidence basis. The most reasonable, way to handle this is to wait for further evidence, until it can be considered sufficiently solid. Currently, ethical considerations argue against clinical adoption of biomarker-guided use of head CT in the investigated population.

## Statistics from Region Örebro County

In this section, we present data regarding visits to the emergency department (ED) and the number of head CT provided by Produktionsenheten, and the Department of Radiology in Region Örebro län. All data were anonymized and provided on a group level.


### Emergency department Örebro University Hospital

The number of children attending the ED (paediatric or surgical) in Örebro during 2010-2013 and who were registered with S09.9 (unspecified injury of head) as the presenting complaint (not final diagnosis) is presented in Table 7. The average number of patients per year was 1,160 in 2010-2016 compared to 1,113 per year during 2017-2023. A clear drop was noted during the pandemic 2020-21.

**Table 7** Number of patients younger than 18 years attending the emergency department in Örebro University Hospital between 2010 and 2023 due to unspecified head trauma (S09.9)

|                 | 2010        | 2011        | 2012        | 2013        | 2014        | 2015        | 2016        | 2017        | 2018        | 2019        | 2020        | 2021        | 2022        | 2023        |
|-----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| <b>Girls</b>    |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| 0-6 months      | 35          | 57          | 52          | 55          | 62          | 60          | 45          | 34          | 45          | 32          | 31          | 24          | 19          | 22          |
| 6-12 months     | 57          | 64          | 46          | 71          | 59          | 62          | 75          | 49          | 68          | 82          | 57          | 59          | 74          | 51          |
| 1-3 yrs         | 120         | 129         | 139         | 122         | 163         | 118         | 127         | 122         | 143         | 142         | 92          | 119         | 128         | 118         |
| 3-6 yrs         | 65          | 69          | 84          | 95          | 98          | 91          | 87          | 88          | 90          | 87          | 71          | 87          | 70          | 81          |
| 6-12 yrs        | 81          | 89          | 91          | 81          | 74          | 85          | 90          | 100         | 107         | 103         | 99          | 110         | 104         | 91          |
| 12- <18 yrs     | 77          | 74          | 88          | 92          | 82          | 92          | 85          | 76          | 73          | 105         | 68          | 95          | 81          | 102         |
| <b>Subtotal</b> | <b>435</b>  | <b>482</b>  | <b>500</b>  | <b>516</b>  | <b>538</b>  | <b>508</b>  | <b>509</b>  | <b>469</b>  | <b>526</b>  | <b>551</b>  | <b>418</b>  | <b>494</b>  | <b>476</b>  | <b>465</b>  |
| <b>Boys</b>     |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| 0-6 months      | 51          | 61          | 48          | 55          | 48          | 45          | 41          | 33          | 43          | 35          | 24          | 31          | 20          | 27          |
| 6-12 months     | 63          | 59          | 60          | 76          | 78          | 66          | 99          | 73          | 69          | 63          | 43          | 51          | 48          | 55          |
| 1-3 years       | 151         | 173         | 163         | 185         | 149         | 154         | 153         | 150         | 173         | 172         | 151         | 133         | 182         | 173         |
| 3-6 years       | 101         | 104         | 108         | 138         | 122         | 121         | 133         | 123         | 126         | 131         | 123         | 104         | 114         | 150         |
| 6-12 years      | 116         | 156         | 157         | 156         | 138         | 151         | 178         | 145         | 144         | 178         | 153         | 148         | 149         | 181         |
| 12- <18 years   | 95          | 101         | 98          | 122         | 111         | 121         | 128         | 111         | 81          | 100         | 89          | 82          | 106         | 109         |
| <b>Subtotal</b> | <b>577</b>  | <b>654</b>  | <b>634</b>  | <b>732</b>  | <b>646</b>  | <b>658</b>  | <b>732</b>  | <b>635</b>  | <b>636</b>  | <b>679</b>  | <b>583</b>  | <b>549</b>  | <b>619</b>  | <b>695</b>  |
| <b>Total</b>    | <b>1012</b> | <b>1136</b> | <b>1134</b> | <b>1248</b> | <b>1184</b> | <b>1166</b> | <b>1241</b> | <b>1104</b> | <b>1162</b> | <b>1230</b> | <b>1001</b> | <b>1043</b> | <b>1095</b> | <b>1160</b> |

Mean number of patients attending the ED in Örebro for unspecified head trauma during 2010-2023 by age and sex is summarised in Figure 3. From the age of one this is more common among boys.

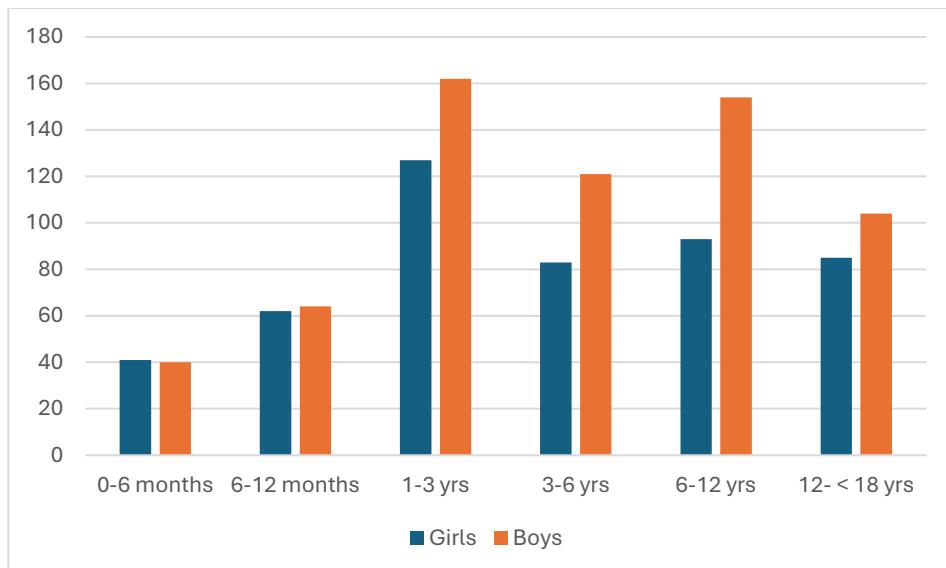


**Figure 3** Average number of patients attending the ED in Örebro per year registered as S09.9 during 2010-2023 by age and sex

## Data for all Region Örebro County

The number of inhabitants in Region Örebro County under the age of 18 years increased by 10% between 2010 and 2024 (Table 8). The numbers were quite stable between 2017 and 2023.

**Table 8** Number of inhabitants 0-18 years in Region Örebro County in 2010-2024. Data source: Statistics, Sweden


| Year | N      |
|------|--------|
| 2010 | 60,456 |
| 2015 | 62,727 |
| 2020 | 67,429 |
| 2024 | 66,335 |

The number of patients younger than 18 years attending any of the three EDs in Region Örebro County (Karlskoga, Lindesberg, Örebro) between 2017 and 2023 has also been quite stable, except for the drop during the pandemic (Table 9).

**Table 9** Number of patients < 18 years registered as S09.9 at all three EDs in Region Örebro County 2017-2023

|                   | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 |
|-------------------|------|------|------|------|------|------|------|
| <b>Karlskoga</b>  | 264  | 225  | 241  | 202  | 242  | 268  | 253  |
| <b>Lindesberg</b> | 138  | 132  | 141  | 131  | 125  | 167  | 168  |
| <b>Örebro</b>     | 1104 | 1162 | 1230 | 1001 | 1043 | 1095 | 1160 |
| <b>Total</b>      | 1506 | 1519 | 1612 | 1334 | 1410 | 1506 | 1519 |

Head CT *for all indications* in Region Örebro County in patients younger than 18 years decreased between 2017 and 2024 (Figure 4). In 2010, there were 396 head CT in this group and in 2024 there were 261. In 2024, rate of head CT in individuals under the age of 18 years was  $\sim 260/66,000$ , or 0.4% per year.



**Figure 4** Annual number of head CT per year for patients <18 years in Region Örebro County

In summary, the number of inhabitants younger than 18 years of age in Region Örebro County increased by some 10% between 2010 and 2024, while the number seeking medical care for unspecified head injury seems not to have increased at the same rate. A downward trend for head CT *all indications* was observed for patients under the age of 18 years.

The estimated rate of head CT scan *all indications* for children and adolescents was 4/1,000 in 2024 in Region Örebro County. Experts must evaluate to what extent this is of great concern. However, a strong societal risk awareness regarding children's safety, and a healthcare system with low medico-legal pressure allowing clinicians to base decisions on professional judgement rather than litigation concerns, may already have limited the scope for additional reductions in the rate of head CT in this age group by biomarkers.

## Appendices 1-5

### Appendix 1 Literature search strategies

**Database:** Database(s): Ovid MEDLINE(R) ALL 1946 to May 29, 2025

**Host:** Ovid

**Date searched:** 2025-05-30

**Limits applied:** publications in English or Swedish language

| Concept                | #  | Search                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Results |
|------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Traumatic brain injury | 1  | exp Head Injuries, Closed/ or exp Brain Injuries/ or Brain Injuries, Traumatic/ or Brain Concussion/ or Brain Contusion/ or Craniocerebral Trauma/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 111795  |
|                        | 2  | ("brain injur*" or "head injur*" or "head trauma*" or "cranial trauma*" or "craniocerebral trauma*" or "cerebr* injur*" or "brain trauma*" or "traumat* brain injur*" or TBI or "brain lesion*" or "cerebral lesion*" or "cerebellum injur*" or "brain concussion*" or "brain contusion*" or "cerebrum lesion*" or "intracranial injur*" or "mild traumatic brain injur*" or "minor traumatic brain injur*" or "mild head injur*" or "minor head injur*" or "minor head trauma" or mTBI or "cerebral concussion" or commotio).ab,kf,ti.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 158615  |
|                        | 3  | 1 or 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 194273  |
| Biomarkers             | 4  | "Glial Fibrillary Acidic Protein"/ or "Ubiquitin Thiolesterase"/ or "S100 Calcium Binding Protein beta Subunit"/ or "Neurofilament Proteins"/ or "tau Proteins"/ or exp MicroRNAs/ or Myelin Basic Protein/ or exp "Fatty Acid-Binding Proteins"/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 208374  |
|                        | 5  | UCHL1 protein, human.mp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 773     |
|                        | 6  | (S100B or "S100 B" or "S 100B" or "S100beta" or "S100 beta" or "S 100beta" or "S100 calcium-binding protein B" or "S100 calcium-binding protein beta" or "S100 subunit beta" or "protein S100beta" or "S 100 B protein" or "S 100 calcium binding protein beta subunit" or "S100 calcium binding protein B" or "S100 calcium binding protein beta subunit" or "S100 protein beta subunit" or "S100beta protein" or GFAP or GFA or "gfa protein" or "glia fibril acidic protein" or "glia fibril acid protein" or "glia fibrillary acidic protein" or "glia fibrillary acid protein" or "glial acidic fibrillary protein" or "glial fibrillary acid protein" or "glial fibrillary acidic protein" or "glia filament protein" or "glial filament protein" or "glial fibrillary protein" or "glial filament protein" or "protein gfa" or UCHL-1 or UCHL1 or UCH-L1 or "ubiquitin c-terminal hydrolase" or "ubiquitin c-terminal esterase" or "ubiquitin thiolesterase" or "ubiquitin c terminal thiolester hydrolase" or "ubiquitin carboxy terminal esterase" or "ubiquitin carboxy terminal hydrolase" or "ubiquitin carboxyl terminal hydrolase" or "ubiquitin carboxyl terminal esterase" or "ubiquitin carboxyterminal hydrolase" or NFL or NF-L or "NF L" or NEFL or NFM or NF-M or NEFM or "neurofilament protein" or "neurofilament light" or "neurofilament medium" or tau or miRNA* or MicroRNA* or "Micro RNA*" or NSE or "neuron-specific enolase" or mbp or "myelin basic protein" or MBP or H-FABP or "heart fatty acid binding protein" or "heart type acid binding protein" or "heart specific fatty acid binding protein" or "muscle fatty acid binding protein").ab,kf,ti. | 307257  |
|                        | 7  | 4 or 5 or 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 356917  |
| Children               | 8  | exp adolescent/ or exp child/ or exp infant/ or (adolescen* or babies or baby or boy or boys or boyhood or girlhood or child* or girl? or infan* or juvenil* or kid or kids or minor* or neonat* or neo-nat* or newborn* or new-born* or paediatric* or paediatric* or pediatric* or perinat* or preschool* or puber* or pubescen* or school* or teen* or toddler? or underage? or under-age? or youth*).ti,ab,kf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5643621 |
| Computed tomography    | 9  | exp Tomography, X-Ray Computed/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 523574  |
|                        | 10 | (tomograph* or "ct x ray" or "ct x rays" or "cine ct" or "ct scan*" or "ctt scan*" or "cat scan*" or "catting" or "x ray ct" or "x rays ct" or "emi scan*" or "computerised axial tomogram*" or "computerized axial tomogram*" or "computerized tomogram*" or "zonograph*" or CT or CCT or "cranial computed tomograph*").ab,kf,ti.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 892070  |
|                        | 11 | 9 or 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1077565 |
| Combined sets          | 12 | 3 and 7 and 8 and 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 213     |
|                        | 13 | limit 12 to (english or swedish)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199     |

**Field Codes:** /:Mesh-term; exp: Exploded Mesh-term; ab: Abstract; kf: Keyword heading word; ti: Title.

**Database:** Embase**Host:** Embase.com**Date searched:** 2025-05-28**Limits applied:** publications in English or Swedish language

| Concept                | #  | Search                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Results |
|------------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Traumatic brain injury | 1  | 'brain injury'/exp OR 'head injury'/de OR 'traumatic brain injury'/de OR 'brain contusion'/de OR 'brain concussion'/de OR 'pediatric traumatic brain injury'/de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 293809  |
|                        | 2  | 'brain injur*':ti,ab,kw OR 'head injur*':ti,ab,kw OR 'head trauma*':ti,ab,kw OR 'cranial trauma*':ti,ab,kw OR 'craniocerebral trauma*':ti,ab,kw OR 'cerebr* injur*':ti,ab,kw OR 'brain trauma*':ti,ab,kw OR 'traumat* brain injur*':ti,ab,kw OR tbi:ti,ab,kw OR 'brain lesion*':ti,ab,kw OR 'cerebral lesion*':ti,ab,kw OR 'cerebellum injur*':ti,ab,kw OR 'brain concussion*':ti,ab,kw OR 'brain contusion*':ti,ab,kw OR 'cerebrum lesion*':ti,ab,kw OR 'intracranial injur*':ti,ab,kw OR 'mild traumatic brain injur*':ti,ab,kw OR 'minor traumatic brain injur*':ti,ab,kw OR 'mild head injur*':ti,ab,kw OR 'minor head injur*':ti,ab,kw OR 'minor head trauma':ti,ab,kw OR mtbi:ti,ab,kw OR 'cerebral concussion':ti,ab,kw OR commotio:ti,ab,kw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 228641  |
|                        | 3  | #1 OR #2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 355678  |
| Biomarkers             | 4  | 'glial fibrillary acidic protein'/de OR 'ubiquitin thiolesterase'/de OR 'ubiquitin carboxy terminal hydrolase 1'/de OR 'uchl1 protein human'/de OR 'protein s100b'/de OR 'tau protein'/de OR 'microrna'/exp OR 'myelin basic protein'/de OR 'fatty acid binding protein'/exp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 382309  |
|                        | 5  | s100b:ti,ab,kw OR 's100 b':ti,ab,kw OR 's 100b':ti,ab,kw OR 's100beta':ti,ab,kw OR 's100 beta':ti,ab,kw OR 's 100beta':ti,ab,kw OR 's100 calcium-binding protein b':ti,ab,kw OR 's100 calcium-binding protein beta':ti,ab,kw OR 's100 subunit beta':ti,ab,kw OR 'protein s100beta':ti,ab,kw OR 's 100 b protein':ti,ab,kw OR 's100 calcium binding protein beta subunit':ti,ab,kw OR 's100 calcium binding protein b':ti,ab,kw OR 's100 calcium binding protein beta subunit':ti,ab,kw OR 's100 protein beta subunit':ti,ab,kw OR 's100beta protein':ti,ab,kw OR gfap:ti,ab,kw OR gfa:ti,ab,kw OR 'gfa protein':ti,ab,kw OR 'glia fibrillar acidic protein':ti,ab,kw OR 'glia fibrillary acidic protein':ti,ab,kw OR 'glia fibrillary acidic protein':ti,ab,kw OR 'glial acidic fibrillary protein':ti,ab,kw OR 'glial fibrillary acid protein':ti,ab,kw OR 'glial fibrillary acidic protein':ti,ab,kw OR 'glial filament protein':ti,ab,kw OR 'protein gfa':ti,ab,kw OR 'uchl 1':ti,ab,kw OR uchl1:ti,ab,kw OR 'uch l1':ti,ab,kw OR 'ubiquitin c-terminal hydrolase':ti,ab,kw OR 'ubiquitin c-terminal esterase':ti,ab,kw OR 'ubiquitin thiolesterase':ti,ab,kw OR 'ubiquitin c terminal thioester hydrolase':ti,ab,kw OR 'ubiquitin carboxy terminal esterase':ti,ab,kw OR 'ubiquitin carboxy terminal hydrolase':ti,ab,kw OR 'ubiquitin carboxyl terminal hydrolase':ti,ab,kw OR 'ubiquitin carboxyl terminal esterase':ti,ab,kw OR 'ubiquitin carboxyterminal hydrolase':ti,ab,kw OR nfl:ti,ab,kw OR 'nf l':ti,ab,kw OR nefl:ti,ab,kw OR nfm:ti,ab,kw OR 'nf m':ti,ab,kw OR nefm:ti,ab,kw OR 'neurofilament protein':ti,ab,kw OR 'neurofilament light':ti,ab,kw OR 'neurofilament medium':ti,ab,kw OR tau:ti,ab,kw OR mirna*:ti,ab,kw OR microrna*:ti,ab,kw OR 'micro rna*':ti,ab,kw OR nse:ti,ab,kw OR 'neuron-specific enolase':ti,ab,kw OR 'myelin basic protein':ti,ab,kw OR mbp:ti,ab,kw OR 'h fabp':ti,ab,kw OR 'heart fatty acid binding protein':ti,ab,kw OR 'heart type acid binding protein':ti,ab,kw OR 'heart specific fatty acid binding protein':ti,ab,kw OR 'muscle fatty acid binding protein':ti,ab,kw | 386895  |
|                        | 6  | #4 OR #5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 493849  |
| Children               | 7  | 'adolescence'/exp OR 'adolescent'/exp OR 'child'/exp OR 'infant'/exp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4732524 |
|                        | 8  | adolescen*:ab,kw,ti OR babies:ab,kw,ti OR baby:ab,kw,ti OR boy:ab,kw,ti OR boys:ab,kw,ti OR boyhood:ab,kw,ti OR girlhood:ab,kw,ti OR child*:ab,kw,ti OR girl\$:ab,kw,ti OR infan*:ab,kw,ti OR juve-nil*:ab,kw,ti OR juvenile*:ab,kw,ti OR kid:ab,kw,ti OR kids:ab,kw,ti OR minor*:ab,kw,ti OR neonat*:ab,kw,ti OR 'neo nat*':ab,kw,ti OR newborn*:ab,kw,ti OR 'new born*':ab,kw,ti OR paediatric*:ab,kw,ti OR paediatric*:ab,kw,ti OR pediatric*:ab,kw,ti OR perinat*:ab,kw,ti OR preschool*:ab,kw,ti OR puber*:ab,kw,ti OR pubescen*:ab,kw,ti OR school:ab,kw,ti OR 'school child*':ab,kw,ti OR school*:ab,kw,ti OR school-child*:ab,kw,ti OR teen*:ab,kw,ti OR toddler\$:ab,kw,ti OR underage\$:ab,kw,ti OR youth*:ab,kw,ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4888836 |
|                        | 9  | #7 OR #8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6570163 |
| Computed tomography    | 10 | 'x-ray computed tomography'/de OR 'dual energy computed tomography'/de OR 'photon counting computed tomography'/de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120769  |
|                        | 11 | tomograph*:ti,ab,kw OR 'ct x ray*':ti,ab,kw OR 'cine ct':ti,ab,kw OR 'ct scan*':ti,ab,kw OR 'ctt scan*':ti,ab,kw OR 'cat scan*':ti,ab,kw OR 'cat scan*':ti,ab,kw OR 'catting':ti,ab,kw OR 'x ray ct':ti,ab,kw OR 'x rays ct':ti,ab,kw OR 'emi scan':ti,ab,kw OR 'computerised axial tomogram*':ti,ab,kw OR 'computerized axial tomogram*':ti,ab,kw OR 'computerized tomogram*':ti,ab,kw OR 'zonograph*':ti,ab,kw OR ct:ti,ab,kw OR cct:ti,ab,kw OR 'cranial computed tomograph*':ti,ab,kw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1360313 |
|                        | 12 | #10 OR #11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1399565 |
| Combined sets          | 13 | #3 AND #6 AND #9 AND #12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 300     |
|                        | 14 | #3 AND #6 AND #9 AND #12 AND ([english]/lim OR [swedish]/lim)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 282     |
|                        | 15 | #14 NOT 'conference abstract'/it                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 224     |

**Field Codes:** /de: Emmtree term; /exp: Exploded Emmtree term; ab: Abstract; kw: Author Keyword; ti: Title.

**Database:** Cochrane Library**Host:** Wiley**Date searched:** 2025-05-28**Limits applied:** publications in English language

| Concept                | #  | Search                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Results |
|------------------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Traumatic brain injury | 1  | MeSH descriptor: [Head Injuries, Closed] explode all trees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 805     |
|                        | 2  | MeSH descriptor: [Brain Injuries] explode all trees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3816    |
|                        | 3  | MeSH descriptor: [Brain Injuries, Traumatic] this term only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1334    |
|                        | 4  | MeSH descriptor: [Brain Concussion] this term only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 618     |
|                        | 5  | MeSH descriptor: [Brain Contusion] this term only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12      |
|                        | 6  | MeSH descriptor: [Craniocerebral Trauma] this term only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 452     |
|                        | 7  | (brain NEXT injur* or head NEXT injur* or head NEXT trauma* or cranial NEXT trauma* or craniocerebral NEXT trauma* or cerebral NEXT injur* or brain NEXT trauma* or traumatic NEXT brain NEXT injur* or TBI or brain NEXT lesion* or cerebral NEXT lesion* or cerebellum NEXT injur* or brain NEXT concussion* or brain NEXT contusion* or cerebrum NEXT lesion* or intracranial NEXT injur* or mild NEXT traumatic NEXT brain NEXT injur* or minor NEXT traumatic NEXT brain NEXT injur* or mild NEXT head NEXT injur* or minor NEXT head NEXT injur* or "minor head trauma" or mTBI or "cerebral concussion" or commotio):ti,ab,kw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12782   |
|                        | 8  | {OR #1-#7}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12866   |
| Biomarkers             | 9  | MeSH descriptor: [Glial Fibrillary Acidic Protein] this term only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 51      |
|                        | 10 | MeSH descriptor: [Ubiquitin Thiolesterase] this term only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26      |
|                        | 11 | MeSH descriptor: [S100 Calcium Binding Protein beta Subunit] this term only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 175     |
|                        | 12 | MeSH descriptor: [Neurofilament Proteins] this term only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 86      |
|                        | 13 | MeSH descriptor: [tau Proteins] this term only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 201     |
|                        | 14 | MeSH descriptor: [MicroRNAs] explode all trees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 566     |
|                        | 15 | MeSH descriptor: [Myelin Basic Protein] this term only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 44      |
|                        | 16 | MeSH descriptor: [Fatty Acid-Binding Proteins] explode all trees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 171     |
|                        | 17 | (UCHL1 protein, human)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22      |
|                        | 18 | (S100B or "S100 B" or "S 100B" or "S100beta" or "S100 beta" or "S 100beta" or "S100 calcium-binding protein B" or "S100 calcium-binding protein beta" or "S100 subunit beta" or "protein S100beta" or "S 100 B protein" or "S 100 calcium binding protein beta subunit" or "S100 calcium binding protein B" or "S100 calcium binding protein beta subunit" or "S100 protein beta subunit" or "S100beta protein" or GFAP or GFA or "gfa protein" or "glia fibril acidic protein" or "glia fibril acid protein" or "glia fibrillary acidic protein" or "glia fibrillary acid protein" or "glial acidic fibrillary protein" or "glial fibrillary acid protein" or "glial fibrillary acidic protein" or "glial filament protein" or "glial filament protein" or "glial fibrillary protein" or "glial filament protein" or "protein gfa" or UCHL-1 or UCHL1 or UCH-L1 or "ubiquitin c-terminal hydrolase" or "ubiquitin c-terminal esterase" or "ubiquitin thiolesterase" or "ubiquitin c terminal thiolester hydrolase" or "ubiquitin carboxy terminal esterase" or "ubiquitin carboxy terminal hydrolase" or "ubiquitin carboxyl terminal hydrolase" or "ubiquitin carboxyl terminal esterase" or "ubiquitin carboxyterminal hydrolase" or NFL or NF-L or "NF L" or NEFL or NFM or NF-M or NEFM or "neurofilament protein" or "neurofilament light" or "neurofilament medium" or tau or miRNA* or "micro RNA" or "micro RNAs" or microRNA* or NSE or "neuron-specific enolase" or mbp or "myelin basic protein" or H-FABP or "heart fatty acid binding protein" or "heart type acid binding protein" or "heart specific fatty acid binding protein" or "muscle fatty acid binding protein"):ti,ab,kw | 11952   |
|                        | 19 | {OR #9-#18}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12105   |
| Children               | 20 | MeSH descriptor: [Adolescent] explode all trees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 136477  |
|                        | 21 | MeSH descriptor: [Child] explode all trees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 81919   |
|                        | 22 | MeSH descriptor: [Infant] explode all trees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45528   |
|                        | 23 | (adolescen* or babies or baby or boy or boys or boyhood or girlhood or child* or girl* or infant* or juvenil* or kid or kids or minor* or neonat* or neo-nat* or newborn* or new-born* or paediatric* or paediatric* or pediatric* or perinat* or preschool* or puber* or pubescen* or school* or teen* or toddler* or underage* or under-age* or youth*):ti,ab,kw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 426056  |
|                        | 24 | [20-#23]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 426056  |
|                        | 25 | MeSH descriptor: [Tomography, X-Ray Computed] explode all trees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8786    |
| Computed tomography    | 26 | (tomograph* or "ct x ray" or "ct x rays" or "cine ct" or "ct scan" or "ctt scan" or "ct scans" or "ctt scans" or "cat scan" or "cat scans" or "catting" or "x ray ct" or "x rays ct" or "emi scan" or computerised NEXT axial NEXT tomogram* or computerized NEXT axial NEXT tomogram* or computerized NEXT tomogram* or zonograph* or CT or CCT or cranial NEXT computed NEXT tomograph*):ti,ab,kw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 107036  |
|                        | 27 | #25 or #26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 107040  |
|                        | 28 | #8 AND #19 and #24 and #27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25      |
| Combined sets          | 29 | #8 AND #19 and #24 and #27 (limited to English language)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24      |

**Field Codes:** /MeSH descriptor: [] explode all trees: Exploderad Mesh-term; MeSH descriptor: [] this term only: unexplode Mesh-term; ab: Abstract; kw: Keywords; ti: Title

## Appendix 2 Excluded studies and reason for exclusion

| Year    | Publication                                                                                                                                                                                                                                                                                                                                                                                                                                           | Reason for exclusion                                                            |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 1 2025  | Chiollaz A-C, Pouillard V, Seiler M, Habre C, Romano F, Ritter Schenck C, et al. Evaluating NfL and NTproBNP as predictive biomarkers of intracranial injuries after mild traumatic brain injury in children presenting to emergency departments. <i>Frontiers in neurology</i> 2025; 16: 1518776. doi: <a href="https://dx.doi.org/10.3389/fneur.2025.1518776">https://dx.doi.org/10.3389/fneur.2025.1518776</a>                                     | No data<br>No data on biomarkers vs CT                                          |
| 2       | Ladang A, Vavoulis G, Trifonidi I, Calluy E, Karagianni K, Mitropoulos A, et al. Increased specificity of the "GFAP/UCH-L1" mTBI rule-out test by age dependent cut-offs. <i>Clinical chemistry and laboratory medicine</i> 2025; 63: 995-1003. doi: <a href="https://dx.doi.org/10.1515/cclm-2024-1034">https://dx.doi.org/10.1515/cclm-2024-1034</a>                                                                                                | Wrong population<br>All >18 yrs                                                 |
| 3       | Puravet A, Oris C, Pereira B, Kahouadji S, Gonzalo P, Masson D, et al. Serum GFAP and UCH-L1 for the identification of clinically important traumatic brain injury in children in France: a diagnostic accuracy substudy. <i>The Lancet Child &amp; adolescent health</i> 2025; 9: 47-56. doi: <a href="https://dx.doi.org/10.1016/S2352-4642(24)00295-5">https://dx.doi.org/10.1016/S2352-4642(24)00295-5</a>                                        | No data<br>86 patients had CT but no data on biomarkers in this group           |
| 4 2024  | Bouvier D, Cantais A, Laspougeas A, Lorton F, Plenier Y, Cottier M, et al. Serum S100B Level in the Management of Pediatric Minor Head Trauma: A Randomized Clinical Trial. <i>JAMA network open</i> 2024; 7: e242366. doi: <a href="https://dx.doi.org/10.1001/jamanetworkopen.2024.2366">https://dx.doi.org/10.1001/jamanetworkopen.2024.2366</a>                                                                                                   | Wrong study design<br>RCT for evaluating effectiveness of S100B for reducing CT |
| 5       | Mannix R, Borglund E, Monashefsky A, Master C, Corwin D, Badawy M, et al. Age-Dependent Differences in Blood Levels of Glial Fibrillary Acidic Protein but Not Ubiquitin Carboxy-Terminal Hydrolase L1 in Children. <i>Neurology</i> 2024; 103: e209651. doi: <a href="https://dx.doi.org/10.1212/WNL.00000000000209651">https://dx.doi.org/10.1212/WNL.00000000000209651</a>                                                                         | Wrong population<br>No TBI                                                      |
| 6       | Menditto VG, Moretti M, Babini L, Mattioli A, Giuliani AR, Fratini M, et al. Minor head injury in anticoagulated patients: performance of biomarkers S100B, NSE, GFAP, UCH-L1 and Alinity TBI in the detection of intracranial injury. A prospective observational study. <i>Clinical chemistry and laboratory medicine</i> 2024; 62: 1376-82. doi: <a href="https://dx.doi.org/10.1515/cclm-2023-1169">https://dx.doi.org/10.1515/cclm-2023-1169</a> | Wrong population<br>Anticoagulated patients<br>>18 yrs                          |
| 7       | Puccio AM, Yue JK, Korley FK, Okonkwo DO, Diaz-Arrastia R, Yuh EL, et al. Diagnostic Utility of Glial Fibrillary Acidic Protein Beyond 12 Hours After Traumatic Brain Injury: A TRACK-TBI Study. <i>Journal of Neurotrauma</i> 2024; 41: 1353-63. doi: <a href="https://10.1089/neu.2023.0186">https://10.1089/neu.2023.0186</a>                                                                                                                      | Wrong population<br>No data on <18 yrs                                          |
| 8       | Trnka S, Stejskal P, Jablonsky J, Krahulik D, Pohlodek D, Hrabalek L. S100B protein as a biomarker and predictor in traumatic brain injury. <i>Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia</i> 2024; 168: 288-94. doi: <a href="https://dx.doi.org/10.5507/bp.2023.025">https://dx.doi.org/10.5507/bp.2023.025</a>                                                                                    | Wrong population<br>No data on <18 yrs                                          |
| 9 2023  | Blackwell LS, Wali B, Xiang Y, Alawieh A, Sayeed I, Reisner A. Prognostic Value of Plasma Biomarkers S100B and Osteopontin in Pediatric TBI: A Prospective Analysis Evaluating Acute and 6-Month Outcomes after Mild to Severe TBI. <i>Biomedicines</i> 2023; 11. doi: <a href="https://dx.doi.org/10.3390/biomedicines11082167">https://dx.doi.org/10.3390/biomedicines11082167</a>                                                                  | No data*<br>No outcome data for GCS 14-15 separately                            |
| 10      | Gardner RC, Puccio AM, Korley FK, Wang KKW, Diaz-Arrastia R, Okonkwo DO, et al. Effects of age and time since injury on traumatic brain injury blood biomarkers: a TRACK-TBI study. <i>Brain communications</i> 2023; 5: fcac316. doi: <a href="https://dx.doi.org/10.1093/braincomms/fcac316">https://dx.doi.org/10.1093/braincomms/fcac316</a>                                                                                                      | Wrong population<br>No data on <18 yrs separately                               |
| 11      | Gök, S., Kilci, A. İ., Gedik, M. S., et al. The usefulness of S100B protein and fractalkin in predicting traumatic brain injury in pediatric patients with minor head trauma. <i>Intercontinental Journal of Emergency Medicine</i> . 2023, 1, 4,63-66. doi: <a href="https://dx.doi.org/10.51271/ijjem-0017">https://dx.doi.org/10.51271/ijjem-0017</a>                                                                                              | No data<br>No data on time for blood draw - head trauma                         |
| 12      | Kelmendi FM, Morina AA, Mekaj AY, Dragusha S, Ahmeti F, Alimehmeti R, et al. Ability of S100B to predict post-concussion syndrome in paediatric patients who present to the emergency department with mild traumatic brain injury. <i>British journal of neurosurgery</i> 2023; 37: 53-8. doi: <a href="https://dx.doi.org/10.1080/02688697.2021.1878487">https://dx.doi.org/10.1080/02688697.2021.1878487</a>                                        | Wrong focus<br>Biomarkers to predict post-concussion syndrome                   |
| 13 2022 | Helmrich IRAR, Czeiter E, Amrein K, Büki A, Lingsma HF, Menon DK, et al. Incremental prognostic value of acute serum biomarkers for functional outcome after traumatic brain injury (CENTER-TBI): an observational cohort study. <i>The Lancet Neurology</i> 2022; 21: 792-802. doi: <a href="https://10.1016/S1474-4422(22)00218-6">https://10.1016/S1474-4422(22)00218-6</a>                                                                        | Wrong focus<br>Prognostic value of biomarkers                                   |

|    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                          |
|----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| 14 |      | Korley FK, Jain S, Sun X, Puccio AM, Yue JK, Gardner RC, et al. Prognostic value of day-of-injury plasma GFAP and UCH-L1 concentrations for predicting functional recovery after traumatic brain injury in patients from the US TRACK-TBI cohort: an observational cohort study. <i>The Lancet Neurology</i> 2022; 21: 803-13. doi: <a href="https://10.1016/S1474-4422(22)00256-3">https://10.1016/S1474-4422(22)00256-3</a>                                | Wrong population<br>No data on <18 yrs separately                                        |
| 15 |      | Papa L, Rosenthal K, Cook L, Caire M, Thundiyil JG, Ladde JG, et al. Concussion severity and functional outcome using biomarkers in children and youth involved in organized sports, recreational activities and non-sport related incidents. <i>Brain injury</i> 2022; 36: 939-47. doi: <a href="https://dx.doi.org/10.1080/02699052.2022.2106383">https://dx.doi.org/10.1080/02699052.2022.2106383</a>                                                     | No data<br>No data on <18 yrs separately                                                 |
| 16 |      | Ryan E, Kelly L, Stacey C, Duff E, Huggard D, Leonard A, et al. Traumatic Brain Injury in Children: Glial fibrillary Acidic Protein and Clinical Outcomes. <i>Pediatr Emerg Care</i> 2022; 38: e1139-e42. doi: <a href="https://10.1097/PEC.00000000000002527">https://10.1097/PEC.00000000000002527</a>                                                                                                                                                     | No data<br>No data on biomarkers vs CT outcome                                           |
| 17 |      | Whitehouse DP, Monteiro M, Czeiter E, Vyvere TV, Valerio F, Ye Z, et al. Relationship of admission blood proteomic biomarkers levels to lesion type and lesion burden in traumatic brain injury: A CENTER-TBI study. <i>eBioMedicine</i> 2022; 75. doi: <a href="https://10.1016/j.ebiom.2021.103777">https://10.1016/j.ebiom.2021.103777</a>                                                                                                                | Wrong population<br>No data on <18 yrs separately                                        |
| 18 | 2021 | Blais Lécyer J, Mercier É, Tardif PA, Archambault PM, Chauny JM, Berthelot S, et al. S100B protein level for the detection of clinically significant intracranial haemorrhage in patients with mild traumatic brain injury: A subanalysis of a prospective cohort study. <i>Emergency Medicine Journal</i> 2021; 38: 285-9. doi: <a href="https://10.1136/emermed-2020-209583">https://10.1136/emermed-2020-209583</a> .                                     | Wrong population<br>No data on <18 yrs separately                                        |
| 19 |      | Lorton F, Simon-Pimmel J, Masson D, Launay E, Gras-Le Guen C, Scherdel P. Impact of routine S100B protein assay on CT scan use in children with mild traumatic brain injury. <i>Clinical chemistry and laboratory medicine</i> 2021; 59: 875-82. doi: <a href="https://dx.doi.org/10.1515/cclm-2020-1293">https://dx.doi.org/10.1515/cclm-2020-1293</a>                                                                                                      | Wrong study design<br>Before-after study;<br>impact of PECARN rules incl S100B on CT use |
| 20 |      | Massaeli M, Nava AO, Hejripour Rafsanjani SZ, Bagherzadeh MB, Shahabian M. Diagnostic value of neuron-specific enolase in patients with traumatic brain injury referring to emergency departments in 2015-2016. <i>Journal of Kerman University of Medical Sciences</i> 2021; 28: 319-29. doi: <a href="https://10.22062/JKMU.2021.91675">https://10.22062/JKMU.2021.91675</a>                                                                               | Wrong population<br>No data on <18 yrs separately                                        |
| 21 | 2020 | Forouzan A, Motamed H, Delirrooyfard A, Zallaghi S. Serum Cleaved Tau Protein and Clinical Outcome in Patients with Minor Head Trauma. <i>Open access emergency medicine : OAEM</i> 2020; 12: 7-12. doi: <a href="https://dx.doi.org/10.2147/OAEM.S217424">https://dx.doi.org/10.2147/OAEM.S217424</a>                                                                                                                                                       | Wrong population<br>No data on <18 yrs separately                                        |
| 22 |      | Gao N, Zhang-Brotzge X, Wali B, Sayeed I, Chern JJ, Blackwell LS, et al. Plasma osteopontin may predict neuroinflammation and the severity of pediatric traumatic brain injury. <i>J Cereb Blood Flow Metab</i> 2020; 40: 35-43. doi: <a href="https://10.1177/0271678X19836412">https://10.1177/0271678X19836412</a>                                                                                                                                        | No data*<br>No outcome data for GCS 14-15 separately                                     |
| 23 |      | Lewis JM, Dhawan S, Obirize AC, Sarno B, Akers J, Heller MJ, et al. Plasma Biomarker for Post-concussive Syndrome: A Pilot Study Using an Alternating Current Electro-Kinetic Platform. <i>Frontiers in neurology</i> 2020; 11: 685. doi: <a href="https://dx.doi.org/10.3389/fneur.2020.00685">https://dx.doi.org/10.3389/fneur.2020.00685</a>                                                                                                              | Wrong population<br>No data on <18 yrs                                                   |
| 24 |      | Tylicka M, Matuszcak E, Hermanowicz A, Debek W, Karpinska M, Kaminska J, et al. BDNF and IL-8, But Not UCHL-1 and IL-11, Are Markers of Brain Injury in Children Caused by Mild Head Trauma. <i>Brain Sci</i> 2020; 10. doi: <a href="https://10.3390/brainsci10100665">https://10.3390/brainsci10100665</a>                                                                                                                                                 | No data<br>No data on CT                                                                 |
| 25 | 2019 | Cevik S, Ozgenc MM, Guneyk A, Evran S, Akkaya E, Calis F, et al. NRGN, S100B and GFAP levels are significantly increased in patients with structural lesions resulting from mild traumatic brain injuries. <i>Clinical neurology and neurosurgery</i> 2019; 183: 105380. doi: <a href="https://dx.doi.org/10.1016/j.clineuro.2019.105380">https://dx.doi.org/10.1016/j.clineuro.2019.105380</a>                                                              | Wrong population<br>No data on <18 yrs separately                                        |
| 26 |      | Mahan MY, Thorpe M, Ahmadi A, Abdallah T, Casey H, Sturtevant D, et al. Glial Fibrillary Acidic Protein (GFAP) Outperforms S100 Calcium-Binding Protein B (S100B) and Ubiquitin C-Terminal Hydrolase L1 (UCH-L1) as Predictor for Positive Computed Tomography of the Head in Trauma Subjects. <i>World neurosurgery</i> 2019; 128: e434-e44. doi: <a href="https://dx.doi.org/10.1016/j.wneu.2019.04.170">https://dx.doi.org/10.1016/j.wneu.2019.04.170</a> | Wrong population<br>No data on <18 yrs                                                   |
| 27 |      | Parkin GM, Clarke C, Takagi M, Hearps S, Babl FE, Davis GA, et al. Plasma Tumor Necrosis Factor Alpha Is a Predictor of Persisting Symptoms Post-Concussion in Children. <i>Journal of neurotrauma</i> 2019; 36: 1768-75. doi: <a href="https://dx.doi.org/10.1089/neu.2018.6042">https://dx.doi.org/10.1089/neu.2018.6042</a>                                                                                                                               | Wrong focus<br>Biomarkers and post-concussion symptoms                                   |
| 28 |      | Roumpf SK, Welch JL. Can S100B Serum Biomarker Testing Reduce Head Computed Tomography Scanning in Children With Mild Traumatic Brain Injury? <i>Annals of emergency medicine</i> 2019; 73: 456-8. doi: <a href="https://dx.doi.org/10.1016/j.annemergmed.2018.10.012">https://dx.doi.org/10.1016/j.annemergmed.2018.10.012</a>                                                                                                                              | Wrong publication type<br>Editorial / clinical synopsis                                  |
| 29 |      | Stukas S, Higgins V, Frndova H, Gill J, Hubara E, Guerguerian A-M, et al. Characterisation of serum total tau following paediatric traumatic brain injury: a case-control study. <i>The Lancet Child &amp; adolescent health</i> 2019; 3: 558-67. doi: <a href="https://dx.doi.org/10.1016/S2352-4642(19)30194-4">https://dx.doi.org/10.1016/S2352-4642(19)30194-4</a>                                                                                       | Wrong study design<br>Case-control study                                                 |
| 30 | 2018 | Aydin I, Algin A, Poyraz MK, Yumrutas O. Diagnostic value of serum glial fibrillary acidic protein and S100B serum levels in emergency medicine patients with traumatic versus nontraumatic intracerebral hemorrhage. <i>Nigerian journal of clinical practice</i> 2018; 21: 1645-50. doi: <a href="https://dx.doi.org/10.4103/njcp.njcp_431_17">https://dx.doi.org/10.4103/njcp.njcp_431_17</a>                                                             | Wrong population<br>No data on <18 yrs separately                                        |

|    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |
|----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| 31 |      | Delefortrie Q, Lejeune F, Kerzmann B, Levy R, Adam J-F, Sottiaux T, et al. Evaluation of the Roche R Elecsys and the Diasorin R Liaison S100 kits in the management of mild head injury in the emergency room. <i>Clinical biochemistry</i> 2018; 52: 123-30. doi: <a href="https://dx.doi.org/10.1016/j.clinbiochem.2017.11.004">https://dx.doi.org/10.1016/j.clinbiochem.2017.11.004</a>                                                                    | No data<br>No data on biomarkers vs CT                  |
| 32 |      | Dickens AM, Posti JP, Takala RSK, Ala-Seppala H, Mattila I, Coles JP, et al. Serum Metabolites Associated with Computed Tomography Findings after Traumatic Brain Injury. <i>Journal of neurotrauma</i> 2018; 35: 2673-83. doi: <a href="https://dx.doi.org/10.1089/neu.2017.5272">https://dx.doi.org/10.1089/neu.2017.5272</a>                                                                                                                               | Wrong population<br>No data on <18 yrs                  |
| 33 |      | Kelmendi FM, Morina AA, Mekaj AY, Blyta A, Alimehmeti R, Dragusha S, et al. Serum S100B Levels Can Predict Computed Tomography Findings in Paediatric Patients with Mild Head Injury. <i>BioMed research international</i> 2018; 6954045. doi: <a href="https://dx.doi.org/10.1155/2018/6954045">https://dx.doi.org/10.1155/2018/6954045</a>                                                                                                                  | No data<br>No data on sensitivity / specificity         |
| 34 |      | Langness S, Ward E, Halbach J, Lizardo R, Davenport K, Bickler S, et al. Plasma D-dimer safely reduces unnecessary CT scans obtained in the evaluation of pediatric head trauma. <i>J Pediatr Surg</i> 2018; 53: 752-7. doi: <a href="https://dx.doi.org/10.1016/j.jpedsurg.2017.08.017">https://dx.doi.org/10.1016/j.jpedsurg.2017.08.017</a>                                                                                                                | No data<br>Outcome of biomarker vs ciTBI (not vs CT)    |
| 35 |      | Park SH, Hwang SK. Prognostic Value of Serum Levels of S100 Calcium-Binding Protein B, Neuron-Specific Enolase, and Interleukin-6 in Pediatric Patients with Traumatic Brain Injury. <i>World Neurosurg</i> 2018; 118: e534-e42. doi: <a href="https://dx.doi.org/10.1016/j.wneu.2018.06.234">https://dx.doi.org/10.1016/j.wneu.2018.06.234</a>                                                                                                               | Wrong focus<br>Prognostic value of biomarkers           |
| 36 | 2017 | Papa L, Mittal MK, Ramirez J, Silvestri S, Giordano P, Braga CF, et al. Neuronal Biomarker Ubiquitin C-Terminal Hydrolase Detects Traumatic Intracranial Lesions on Computed Tomography in Children and Youth with Mild Traumatic Brain Injury. <i>Journal of neurotrauma</i> 2017; 34: 2132-40. doi: <a href="https://dx.doi.org/10.1089/neu.2016.4806">https://dx.doi.org/10.1089/neu.2016.4806</a>                                                         | No data<br>No data on <18 yrs and GCS 14-15 separately  |
| 37 |      | Peters ME, Rao V, Bechtold KT, Roy D, Sair HI, Leoutsakos J-M, et al. Head injury serum markers for assessing response to trauma: Design of the HeadSMART study. <i>Brain injury</i> 2017; 31: 370-8. doi: <a href="https://dx.doi.org/10.1080/02699052.2016.1231344">https://dx.doi.org/10.1080/02699052.2016.1231344</a>                                                                                                                                    | Wrong population<br>All >18 yrs                         |
| 38 |      | Li, Q. and Zhou, Q. Relationship between CT features and serum gfAP, NSE and S100B protein in patients with severe traumatic brain injury. <i>Biomedical Research (India)</i> . 2017, 28, 22,9926-9929.                                                                                                                                                                                                                                                       | Wrong population<br>No data on <18 yrs separately       |
| 39 | 2016 | Bouvier D, Duret T, Rouzaire P, Jabaudon M, Rouzaire M, Nourrisson C, et al. Preanalytical, analytical, gestational and pediatric aspects of the S100B immuno-assays. <i>Clinical chemistry and laboratory medicine</i> 2016; 54: 833-42. doi: <a href="https://dx.doi.org/10.1515/cclm-2015-0771">https://dx.doi.org/10.1515/cclm-2015-0771</a>                                                                                                              | Wrong focus<br>S100B in healthy individuals             |
| 40 |      | Linsenmaier U, Wirth S, Kanz K-G, Geyer LL. Imaging minor head injury (MHI) in emergency radiology: MRI highlights additional intracranial findings after measurement of trauma biomarker S-100B in patients with normal CCT. <i>The British journal of radiology</i> 2016; 89: 20150827. doi: <a href="https://dx.doi.org/10.1259/bjr.20150827">https://dx.doi.org/10.1259/bjr.20150827</a>                                                                  | Wrong population<br>No data on <18 yrs                  |
| 41 |      | Manzano S, Holzinger IB, Kellenberger CJ, Lacroix L, Klima-Lange D, Hersberger M, et al. Diagnostic performance of S100B protein serum measurement in detecting intracranial injury in children with mild head trauma. <i>Emergency medicine journal : EMJ</i> 2016; 33: 42-6. doi: <a href="https://dx.doi.org/10.1136/emermed-2014-204513">https://dx.doi.org/10.1136/emermed-2014-204513</a>                                                               | No data*<br>No outcome data for GCS 14-15 separately    |
| 42 |      | Mondello S, Kobeissy F, Vestri A, Hayes RL, Kochanek PM, Berger RP. Serum Concentrations of Ubiquitin C-Terminal Hydrolase-L1 and Glial Fibrillary Acidic Protein after Pediatric Traumatic Brain Injury. <i>Scientific reports</i> 2016; 6: 28203. doi: <a href="https://dx.doi.org/10.1038/srep28203">https://dx.doi.org/10.1038/srep28203</a>                                                                                                              | No data*<br>No outcome data for GCS 14-15 separately    |
| 43 |      | Papa L, Brophy GM, Welch RD, Lewis LM, Braga CF, Tan CN, et al. Time Course and Diagnostic Accuracy of Glial and Neuronal Blood Biomarkers GFAP and UCH-L1 in a Large Cohort of Trauma Patients With and Without Mild Traumatic Brain Injury. <i>JAMA neurology</i> 2016; 73: 551-60. doi: <a href="https://dx.doi.org/10.1001/jamaneurol.2016.0039">https://dx.doi.org/10.1001/jamaneurol.2016.0039</a>                                                      | Wrong population<br>Age >18 yrs                         |
| 44 |      | Papa L, Mittal MK, Ramirez J, Ramia M, Kirby S, Silvestri S, et al. In Children and Youth with Mild and Moderate Traumatic Brain Injury, Glial Fibrillary Acidic Protein Out-Performs S100beta in Detecting Traumatic Intracranial Lesions on Computed Tomography. <i>Journal of neurotrauma</i> 2016; 33: 58-64. doi: <a href="https://dx.doi.org/10.1089/neu.2015.3869">https://dx.doi.org/10.1089/neu.2015.3869</a>                                        | No data<br>No data on <18 yrs and GCS 14-15 separately  |
| 45 |      | Welch RD, Ayaz SI, Lewis LM, Unden J, Chen JY, Mika VH, et al. Ability of Serum Glial Fibrillary Acidic Protein, Ubiquitin C-Terminal Hydrolase-L1, and S100B To Differentiate Normal and Abnormal Head Computed Tomography Findings in Patients with Suspected Mild or Moderate Traumatic Brain Injury. <i>Journal of neurotrauma</i> 2016; 33: 203-14. doi: <a href="https://dx.doi.org/10.1089/neu.2015.4149">https://dx.doi.org/10.1089/neu.2015.4149</a> | Wrong population<br>No data on <18 yrs                  |
| 46 |      | Rhine T, Babcock L, Zhang N, Leach J, Wade SL. Are UCH-L1 and GFAP promising biomarkers for children with mild traumatic brain injury? <i>Brain Inj</i> 2016; 30: 1231-8. doi: <a href="https://dx.doi.org/10.1080/02699052.2016.1178396">https://dx.doi.org/10.1080/02699052.2016.1178396</a>                                                                                                                                                                | No data<br>No data on CT                                |
| 47 | 2015 | Heidari K, Asadollahi S, Jamshidian M, Abrishamchi SN, Nouroozi M. Prediction of neuropsychological outcome after mild traumatic brain injury using clinical parameters, serum S100B protein and findings on computed tomography. <i>Brain injury</i> 2015; 29: 33-40. doi: <a href="https://dx.doi.org/10.3109/02699052.2014.948068">https://dx.doi.org/10.3109/02699052.2014.948068</a>                                                                     | Wrong focus<br>Prediction of neuropsychological outcome |

|    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |
|----|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| 48 |      | McMahon PJ, Panczykowski DM, Yue JK, Puccio AM, Inoue T, Sorani MD, et al. Measurement of the glial fibrillary acidic protein and its breakdown products GFAP-BDP biomarker for the detection of traumatic brain injury compared to computed tomography and magnetic resonance imaging. <i>Journal of neurotrauma</i> 2015; 32: 527-33. doi: <a href="https://dx.doi.org/10.1089/neu.2014.3635">https://dx.doi.org/10.1089/neu.2014.3635</a>                               | Wrong population<br>No data on <18 yrs                 |
| 49 |      | Papa L, Zonfrillo MR, Ramirez J, Silvestri S, Giordano P, Braga CF, et al. Performance of Glial Fibrillary Acidic Protein in Detecting Traumatic Intracranial Lesions on Computed Tomography in Children and Youth With Mild Head Trauma. <i>Academic emergency medicine : official journal of the Society for Academic Emergency Medicine</i> 2015; 22: 1274-82. doi: <a href="https://dx.doi.org/10.1111/acem.12795">https://dx.doi.org/10.1111/acem.12795</a>           | No data<br>No data on <18 yrs and GCS 14-15 separately |
| 50 | 2014 | Abbas M, Sajjadi M, Fathi M, Maghsoudi M. Serum S100B Protein as an Outcome Prediction Tool in Emergency Department Patients with Traumatic Brain Injury. <i>Turkish journal of emergency medicine</i> 2014; 14: 147-52. doi: <a href="https://dx.doi.org/10.5505/1304.7361.2014.74317">https://dx.doi.org/10.5505/1304.7361.2014.74317</a>                                                                                                                                | Wrong population<br>No data on <18 yrs                 |
| 51 |      | Gao W, Lu C, Kochanek PM, Berger RP. Serum amyloid A is increased in children with abusive head trauma: a gel-based proteomic analysis. <i>Pediatr Res</i> 2014; 76: 280-6. doi: <a href="https://10.1038/pr.2014.86">https://10.1038/pr.2014.86</a>                                                                                                                                                                                                                       | Wrong focus<br>Abusive head trauma vs controls         |
| 52 |      | Hansen-Schwartz J, Bouchelouche PN. Use of biomarker S100B for traumatic brain damage in the emergency department may change observation strategy. <i>Danish medical journal</i> 2014; 61: A4894. doi: <a href="https://ugeskriftet.dk/dmj/use-biomarker-s100b-traumatic-brain-damage-emergency-department-may-change-observation-strategy">https://ugeskriftet.dk/dmj/use-biomarker-s100b-traumatic-brain-damage-emergency-department-may-change-observation-strategy</a> | Wrong population<br>No data on <18 yrs                 |
| 53 |      | Laribi S, Kansao J, Borderie D, Collet C, Deschamps P, Ababsa R, et al. S100B blood level measurement to exclude cerebral lesions after minor head injury: the multicenter STIC-S100 French study. <i>Clinical chemistry and laboratory medicine</i> 2014; 52: 527-36. doi: <a href="https://dx.doi.org/10.1515/cclm-2013-0621">https://dx.doi.org/10.1515/cclm-2013-0621</a>                                                                                              | Wrong population<br>No data on <18 yrs separately      |
| 54 |      | Mannix R, Eisenberg M, Berry M, Meehan WP, 3rd, Hayes RL. Serum biomarkers predict acute symptom burden in children after concussion: a preliminary study. <i>J Neurotrauma</i> 2014; 31: 1072-5. doi: <a href="https://10.1089/neu.2013.3265">https://10.1089/neu.2013.3265</a>                                                                                                                                                                                           | No data<br>No data on CT                               |
| 55 |      | Papa L, Silvestri S, Brophy GM, Giordano P, Falk JL, Braga CF, et al. GFAP out-performs S100beta in detecting traumatic intracranial lesions on computed tomography in trauma patients with mild traumatic brain injury and those with extracranial lesions. <i>Journal of neurotrauma</i> 2014; 31: 1815-22. doi: <a href="https://dx.doi.org/10.1089/neu.2013.3245">https://dx.doi.org/10.1089/neu.2013.3245</a>                                                         | Wrong population<br>Age >18 yrs                        |
| 56 |      | Thelin EP, Nelson DW, Bellander B-M. Secondary peaks of S100B in serum relate to subsequent radiological pathology in traumatic brain injury. <i>Neurocritical care</i> 2014; 20: 217-29. doi: <a href="https://dx.doi.org/10.1007/s12028-013-9916-0">https://dx.doi.org/10.1007/s12028-013-9916-0</a>                                                                                                                                                                     | Wrong focus<br>Secondary increase of S100B             |
| 57 |      | Tylicka M, Matuszcak E, Debek W, Hermanowicz A, Ostrowska H. Circulating proteasome activity following mild head injury in children. <i>Childs Nerv Syst</i> 2014; 30: 1191-6. doi: <a href="https://10.1007/s00381-014-2409-4">https://10.1007/s00381-014-2409-4</a>                                                                                                                                                                                                      | No data<br>No data on CT                               |
| 58 | 2013 | Bazarian JJ, Blyth BJ, He H, Mookerjee S, Jones C, Kiechle K, et al. Classification accuracy of serum Apo A-I and S100B for the diagnosis of mild traumatic brain injury and prediction of abnormal initial head computed tomography scan. <i>Journal of neurotrauma</i> 2013; 30: 1747-54. doi: <a href="https://dx.doi.org/10.1089/neu.2013.2853">https://dx.doi.org/10.1089/neu.2013.2853</a>                                                                           | Wrong population<br>No data on <18 yrs                 |
| 59 |      | Thelin EP, Johannesson L, Nelson D, Bellander B-M. S100B is an important outcome predictor in traumatic brain injury. <i>Journal of neurotrauma</i> 2013; 30: 519-28. doi: <a href="https://dx.doi.org/10.1089/neu.2012.2553">https://dx.doi.org/10.1089/neu.2012.2553</a>                                                                                                                                                                                                 | Wrong population<br>No data on <18 yrs separately      |
| 60 | 2012 | Babcock L, Byczkowski T, Mookerjee S, Bazarian JJ. Ability of S100B to predict severity and cranial CT results in children with TBI. <i>Brain injury</i> 2012; 26: 1372-80. doi: <a href="https://dx.doi.org/10.3109/02699052.2012.694565">https://dx.doi.org/10.3109/02699052.2012.694565</a>                                                                                                                                                                             | Wrong study design<br>Secondary analysis               |
| 66 |      | Berger RP, Hayes RL, Richichi R, Beers SR, Wang KK. Serum concentrations of ubiquitin C-terminal hydrolase-L1 and alphah-spectrin breakdown product 145 kDa correlate with outcome after pediatric TBI. <i>J Neurotrauma</i> 2012; 29: 162-7. doi: <a href="https://10.1089/neu.2011.1989">https://10.1089/neu.2011.1989</a>                                                                                                                                               | No data*<br>No outcome data for GCS 14-15 separately   |
| 61 |      | Bouvier D, Fournier M, Dauphin J-B, Amat F, Ughetto S, Labbe A, et al. Serum S100B determination in the management of pediatric mild traumatic brain injury. <i>Clinical chemistry</i> 2012; 58: 1116-22. doi: <a href="https://dx.doi.org/10.1373/clinchem.2011.180828">https://dx.doi.org/10.1373/clinchem.2011.180828</a>                                                                                                                                               | No data*<br>No outcome data for GCS 14-15 separately   |
| 62 |      | Cervellin G, Benatti M, Carbucicchio A, Mattei L, Cerasti D, Aloe R, et al. Serum levels of protein S100B predict intracranial lesions in mild head injury. <i>Clinical biochemistry</i> 2012; 45: 408-11. doi: <a href="https://dx.doi.org/10.1016/j.clinbiochem.2012.01.006">https://dx.doi.org/10.1016/j.clinbiochem.2012.01.006</a>                                                                                                                                    | Wrong population<br>No data on <18 yrs                 |
| 63 |      | Metting Z, Wilczak N, Rodiger LA, Schaaf JM, van der Naalt J. GFAP and S100B in the acute phase of mild traumatic brain injury. <i>Neurology</i> 2012; 78: 1428-33. doi: <a href="https://dx.doi.org/10.1212/WNL.0b013e318253d5c7">https://dx.doi.org/10.1212/WNL.0b013e318253d5c7</a>                                                                                                                                                                                     | Wrong population<br>No data on <18 yrs                 |

|    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |
|----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
|    |      | Papa L, Lewis LM, Silvestri S, Falk JL, Giordano P, Brophy GM, et al. Serum levels of ubiquitin C-terminal hydrolase distinguish mild traumatic brain injury from trauma controls and are elevated in mild and moderate traumatic brain injury patients with intracranial lesions and neurosurgical intervention. <i>The journal of trauma and acute care surgery</i> 2012; 72: 1335-44. doi: <a href="https://dx.doi.org/10.1097/TA.0b013e3182491e3d">https://dx.doi.org/10.1097/TA.0b013e3182491e3d</a> | Wrong population<br>Age >18 yrs                                      |
| 64 |      | Zongo D, Ribereau-Gayon R, Masson F, Laborey M, Contrand B, Salmi LR, et al. S100-B protein as a screening tool for the early assessment of minor head injury. <i>Annals of emergency medicine</i> 2012; 59: 209-18. doi: <a href="https://dx.doi.org/10.1016/j.annemergmed.2011.07.027">https://dx.doi.org/10.1016/j.annemergmed.2011.07.027</a>                                                                                                                                                         | Wrong population<br>No data on <18 yrs                               |
| 65 |      | Egea-Guerrero JJ, Revuelto-Rey J, Murillo-Cabezas F, Muñoz-Sánchez MA, Vilches-Arenas A, Sánchez-Linares P, et al. Accuracy of the S100 $\beta$ protein as a marker of brain damage in traumatic brain injury. <i>Brain Injury</i> 2012; 26: 76-82. doi: <a href="https://10.3109/02699052.2011.635360">https://10.3109/02699052.2011.635360</a>                                                                                                                                                          | Wrong population<br>No data on <18 yrs separately                    |
| 66 |      | Sezer AA, Akinci E, Öztürk M, Coşkun F, Yılmaz G, Karakaş A, et al. The role of blood S100B and lactate levels in minor head traumas in children and adults and correlation with brain computerized tomography. <i>Ulusal Travma ve Acil Cerrahi Dergisi</i> 2012; 18: 411-6. doi: <a href="https://10.5505/tjtes.2012.76736">https://10.5505/tjtes.2012.76736</a>                                                                                                                                        | Wrong language<br>Turkish                                            |
| 67 |      | Astrand R, Romner B, Lanke J, Unden J. Reference values for venous and capillary S100B in children. <i>Clinica chimica acta; international journal of clinical chemistry</i> 2011; 412: 2190-3. doi: <a href="https://dx.doi.org/10.1016/j.cca.2011.08.009">https://dx.doi.org/10.1016/j.cca.2011.08.009</a>                                                                                                                                                                                              | Wrong focus<br>Only healthy children                                 |
| 68 | 2011 | Gonzalez-Mao MC, Reparaz-Andrade A, Del Campo-Perez V, Alvarez-Garcia E, Vara-Perez C, Andrade-Olivie MA. Model predicting survival/exitus after traumatic brain injury: biomarker S100B 24h. <i>Clinical laboratory</i> 2011; 57: 587-97. doi: <a href="https://www.clin-lab-publications.com/issue/76">https://www.clin-lab-publications.com/issue/76</a>                                                                                                                                               | Wrong population<br>No data on <18 yrs separately                    |
| 69 |      | Muller B, Evangelopoulos DS, Bias K, Wildisen A, Zimmermann H, Exadaktylos AK. Can S-100B serum protein help to save cranial CT resources in a peripheral trauma centre? A study and consensus paper. <i>Emergency medicine journal : EMJ</i> 2011; 28: 938-40. doi: <a href="https://dx.doi.org/10.1136/EMJ.2010.095372">https://dx.doi.org/10.1136/EMJ.2010.095372</a>                                                                                                                                  | Wrong population<br>No data on <18 yrs                               |
| 70 |      | Zurek J, Bartlova L, Fedora M. Hyperphosphorylated neurofilament NF-H as a predictor of mortality after brain injury in children. <i>Brain injury</i> 2011; 25: 221-6. doi: <a href="https://dx.doi.org/10.3109/02699052.2010.541895">https://dx.doi.org/10.3109/02699052.2010.541895</a>                                                                                                                                                                                                                 | Wrong focus<br>Biomarker as a predictor of mortality                 |
| 71 |      | Zurek J, Fedora M. Dynamics of glial fibrillary acidic protein during traumatic brain injury in children. <i>The Journal of trauma</i> 2011; 71: 854-9. doi: <a href="https://dx.doi.org/10.1097/TA.0b013e3182140c8c">https://dx.doi.org/10.1097/TA.0b013e3182140c8c</a>                                                                                                                                                                                                                                  | Wrong population<br>GCS <9                                           |
| 72 |      | Chang TP, Nager AL. Pediatric traumatic brain injury: the utility of beta-natriuretic peptide. <i>J Trauma</i> 2010; 68: 1401-5. doi: <a href="https://10.1097/TA.0b013e3181bb9a87">https://10.1097/TA.0b013e3181bb9a87</a>                                                                                                                                                                                                                                                                               | No data<br>No GCS distribution presented                             |
| 73 | 2010 | Guzel A, Karasalihoglu S, Aylanc H, Temizoz O, Hicdonmez T. Validity of serum tau protein levels in pediatric patients with minor head trauma. <i>The American journal of emergency medicine</i> 2010; 28: 399-403. doi: <a href="https://dx.doi.org/10.1016/j.ajem.2008.12.025">https://dx.doi.org/10.1016/j.ajem.2008.12.025</a>                                                                                                                                                                        | No data<br>No data on time for blood draw in relation to head trauma |
| 74 |      | Hallen M, Karlsson M, Carlhed R, Hallgren T, Bergenheim M. S-100B in serum and urine after traumatic head injury in children. <i>The Journal of trauma</i> 2010; 69: 284-9. doi: <a href="https://dx.doi.org/10.1097/ta.0b013e3181ca060b">https://dx.doi.org/10.1097/ta.0b013e3181ca060b</a>                                                                                                                                                                                                              | No data<br>Pats with neg CT mixed with pats who had no CT            |
| 75 |      | Swanson CA, Burns JC, Peterson BM. Low plasma D-dimer concentration predicts the absence of traumatic brain injury in children. <i>The Journal of trauma</i> 2010; 68: 1072-7. doi: <a href="https://dx.doi.org/10.1097/TA.0b013e3181d7a6f2">https://dx.doi.org/10.1097/TA.0b013e3181d7a6f2</a>                                                                                                                                                                                                           | No data<br>Presented data do not add up<br>Inconsistent data         |
| 76 |      | Wiesmann M, Steinmeier E, Magerkurth O, Linn J, Gottmann D, Missler U. Outcome prediction in traumatic brain injury: comparison of neurological status, CT findings, and blood levels of S100B and GFAP. <i>Acta neurologica Scandinavica</i> 2010; 121: 178-85. doi: <a href="https://dx.doi.org/10.1111/j.1600-0404.2009.01196.x">https://dx.doi.org/10.1111/j.1600-0404.2009.01196.x</a>                                                                                                               | Wrong population<br>No data on <18 yrs separately                    |
| 77 |      | Bechtel K, Frasure S, Marshall C, Dziura J, Simpson C. Relationship of serum S100B levels and intracranial injury in children with closed head trauma. <i>Pediatrics</i> 2009; 124: e697-704. doi: <a href="https://dx.doi.org/10.1542/peds.2008-1493">https://dx.doi.org/10.1542/peds.2008-1493</a>                                                                                                                                                                                                      | No data<br>No data on GCS distribution                               |
| 78 | 2009 | Berger RP, Ta'asan S, Rand A, Lokshin A, Kochanek P. Multiplex assessment of serum biomarker concentrations in well-appearing children with inflicted traumatic brain injury. <i>Pediatr Res</i> 2009; 65: 97-102. doi: <a href="https://10.1203/PDR.0b013e31818c7e27">https://10.1203/PDR.0b013e31818c7e27</a>                                                                                                                                                                                           | No data<br>Blood sampling mean 26 hrs after trauma                   |
| 79 |      | Castellani C, Bimbashi P, Ruttenstock E, Sacherer P, Stojakovic T, Weinberg AM. Neuroprotein in s-100B -- a useful parameter in paediatric patients with mild traumatic brain injury? <i>Acta paediatrica (Oslo, Norway : 1992)</i> 2009; 98: 1607-12. doi: <a href="https://dx.doi.org/10.1111/j.1651-2227.2009.01423.x">https://dx.doi.org/10.1111/j.1651-2227.2009.01423.x</a>                                                                                                                         | No data*<br>No outcome data for GCS 14-15 separately                 |

|    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                   |
|----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| 81 |      | Geyer C, Ulrich A, Grafe G, Stach B, Till H. Diagnostic value of S100B and neuron-specific enolase in mild pediatric traumatic brain injury. <i>J Neurosurg Pediatr</i> 2009; 4: 339-44. doi: <a href="https://10.3171/2009.5.PEDS08481">https://10.3171/2009.5.PEDS08481</a>                                                                                                                                                           | No data<br>No data on biomarkers vs CT                            |
| 82 |      | Lo T-YM, Jones PA, Minns RA. Pediatric brain trauma outcome prediction using paired serum levels of inflammatory mediators and brain-specific proteins. <i>Journal of neurotrauma</i> 2009; 26: 1479-87. doi: <a href="https://dx.doi.org/10.1089/neu.2008-0753">https://dx.doi.org/10.1089/neu.2008-0753</a>                                                                                                                           | Wrong population<br>GCS 3-13                                      |
| 83 |      | Morochovic R, Racz O, Kitka M, Pingorova S, Cibur P, Tomkova D, et al. Serum S100B protein in early management of patients after mild traumatic brain injury. <i>European journal of neurology</i> 2009; 16: 1112-7. doi: <a href="https://dx.doi.org/10.1111/j.1468-1331.2009.02653.x">https://dx.doi.org/10.1111/j.1468-1331.2009.02653.x</a>                                                                                         | Wrong population<br>No data on <18 yrs separately                 |
| 84 | 2008 | Bak HU, Sung WY, Lee JY, et al. The Usefulness of Serum S-100 beta Levels as a Screening Test for Pediatric Minor Head Trauma. <i>J Korean Soc Emerg Med.</i> 2008, 19(2), 185-191. doi: <a href="https://www.jksem.org/upload/pdf/18401875.pdf">https://www.jksem.org/upload/pdf/18401875.pdf</a>                                                                                                                                      | Wrong language<br>Korean                                          |
| 85 |      | Castellani C, Stojakovic T, Cichocki M, Scharnagl H, Erwa W, Gutmann A, et al. Reference ranges for neuroprotein S-100B: from infants to adolescents. <i>Clinical chemistry and laboratory medicine</i> 2008; 46: 1296-9. doi: <a href="https://dx.doi.org/10.1515/CCLM.2008.262">https://dx.doi.org/10.1515/CCLM.2008.262</a>                                                                                                          | Wrong focus<br>Healthy children only                              |
| 86 |      | Guzel A, Er U, Tatli M, Aluclu U, Ozkan U, Duzenli Y, et al. Serum neuron-specific enolase as a predictor of short-term outcome and its correlation with Glasgow Coma Scale in traumatic brain injury. <i>Neurosurgical review</i> 2008; 31: 439-5. doi: <a href="https://dx.doi.org/10.1007/s10143-008-0148-2">https://dx.doi.org/10.1007/s10143-008-0148-2</a>                                                                        | Wrong population<br>No data on <18 yrs separately                 |
| 87 |      | Pickering A, Carter J, Hanning I, Townend W. Emergency department measurement of urinary S100B in children following head injury: can extracranial injury confound findings? <i>Emergency medicine journal : EMJ</i> 2008; 25: 88-9. doi: <a href="https://dx.doi.org/10.1136/emj.2007.046631">https://dx.doi.org/10.1136/emj.2007.046631</a>                                                                                           | Wrong focus<br>Urinary test for S100B                             |
| 88 | 2007 | Berger RP, Beers SR, Richichi R, Wiesman D, Adelson PD. Serum biomarker concentrations and outcome after pediatric traumatic brain injury. <i>J Neurotrauma</i> 2007; 24: 1793-801. doi: <a href="https://10.1089/neu.2007.0316">https://10.1089/neu.2007.0316</a>                                                                                                                                                                      | Wrong focus<br>Correlation biomarkers - Glasgow Outcome Scale     |
| 89 |      | Muller K, Townend W, Biasca N, Unden J, Waterloo K, Romner B, et al. S100B serum level predicts computed tomography findings after minor head injury. <i>The Journal of trauma</i> 2007; 62: 1452-6. doi: <a href="https://dx.doi.org/10.1097/TA.0b013e318047bfaa">https://dx.doi.org/10.1097/TA.0b013e318047bfaa</a>                                                                                                                   | Wrong population<br>No data on <18 yrs separately                 |
| 90 |      | Piazza O, Storti MP, Cotena S, Stoppa F, Perrotta D, Esposito G, et al. S100B is not a reliable prognostic index in paediatric TBI. <i>Pediatric neurosurgery</i> 2007; 43: 258-64. doi: <a href="https://dx.doi.org/10.1159/000103304">https://dx.doi.org/10.1159/000103304</a>                                                                                                                                                        | Wrong focus<br>S100B as a prognostic test                         |
| 91 | 2006 | Bazarian JJ, Beck C, Blyth B, von Ahsen N, Hasselblatt M. Impact of creatine kinase correction on the predictive value of S-100B after mild traumatic brain injury. <i>Restorative neurology and neuroscience</i> 2006; 24: 163-72. doi: <a href="https://journals.sagepub.com/doi/abs/10.3233/RNN-2006-00342">https://journals.sagepub.com/doi/abs/10.3233/RNN-2006-00342</a>                                                          | Wrong focus<br>CK correction and predictive value of S100B        |
| 92 |      | Berger RP, Dulani T, Adelson PD, Leventhal JM, Richichi R, Kochanek PM. Identification of inflicted traumatic brain injury in well-appearing infants using serum and cerebrospinal markers: a possible screening tool. <i>Pediatrics</i> 2006; 117: 325-32. doi: <a href="https://dx.doi.org/10.1542/peds.2005-0711">https://dx.doi.org/10.1542/peds.2005-0711</a>                                                                      | Wrong focus<br>Biomarkers for the identification of inflicted TBI |
| 93 |      | Biberthaler P, Linsenmeier U, Pfeifer K-J, Kroetz M, Mussack T, Kanz K-G, et al. Serum S-100B concentration provides additional information for the indication of computed tomography in patients after minor head injury: a prospective multicenter study. <i>Shock (Augusta, Ga)</i> 2006; 25: 446-53. doi: <a href="https://dx.doi.org/10.1097/01.shk.0000209534.61058.35">https://dx.doi.org/10.1097/01.shk.0000209534.61058.35</a> | Wrong population<br>No data on <18 yrs                            |
| 94 |      | Naeimi ZS, Weinhofer A, Sarahrudi K, Heinz T, Vecsei V. Predictive value of S-100B protein and neuron specific-enolase as markers of traumatic brain damage in clinical use. <i>Brain injury</i> 2006; 20: 463-8. doi: <a href="https://dx.doi.org/10.1080/02699050600664418">https://dx.doi.org/10.1080/02699050600664418</a>                                                                                                          | Wrong population<br>No data on <18 yrs separately                 |
| 95 |      | Poli-de-Figueiredo LF, Biberthaler P, Simao Filho C, Hauser C, Mutschler W, Jochum M. Measurement of S-100B for risk classification of victims sustaining minor head injury--first pilot study in Brazil. <i>Clinics (Sao Paulo, Brazil)</i> 2006; 61: 41-6. doi: <a href="https://dx.doi.org/10.1590/01807-59322006000100008">https://dx.doi.org/10.1590/01807-59322006000100008</a>                                                   | Wrong population<br>No data on age                                |
| 96 | 2005 | Bandyopadhyay S, Hennes H, Gorelick MH, Wells RG, Walsh-Kelly CM. Serum neuron-specific enolase as a predictor of short-term outcome in children with closed traumatic brain injury. <i>Academic emergency medicine : official journal of the Society for Academic Emergency Medicine</i> 2005; 12: 732-8. doi: <a href="https://dx.doi.org/10.1197/j.aem.2005.02.017">https://dx.doi.org/10.1197/j.aem.2005.02.017</a>                 | No data<br>No data on biomarkers vs CT outcome                    |
| 98 | 2004 | Stranjalis G, Korfias S, Papapetrou C, Kouyialis A, Boviatsis E, Psachoulia C, et al. Elevated serum S-100B protein as a predictor of failure to short-term return to work or activities after mild head injury. <i>Journal of Neurotrauma</i> 2004; 21: 1070-5. doi: <a href="https://10.1089/0897715041651088">https://10.1089/0897715041651088</a>                                                                                   | Wrong population<br>No data on <18 yrs separately                 |

|     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                      |
|-----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 99  | 2003 | Akhtar JI, Spear RM, Senac MO, Peterson BM, Diaz SM. Detection of traumatic brain injury with magnetic resonance imaging and S-100B protein in children, despite normal computed tomography of the brain. <i>Pediatric critical care medicine : a journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies</i> 2003; 4: 322-6. doi: <a href="https://dx.doi.org/10.1097/01.PCC.0000075323.47797.B8">https://dx.doi.org/10.1097/01.PCC.0000075323.47797.B8</a> | Wrong population<br>All children had normal CT       |
| 100 |      | Mussack T, Dvorak J, Graf-Baumann T, Jochum M. Serum S-100B protein levels in young amateur soccer players after controlled heading and normal exercise. <i>European journal of medical research</i> 2003; 8: 457-64. <a href="https://pubmed.ncbi.nlm.nih.gov/14594652/">https://pubmed.ncbi.nlm.nih.gov/14594652/</a>                                                                                                                                                                                                           | Wrong population<br>No data on <18 yrs               |
| 101 |      | Spinella PC, Dominguez T, Drott HR, Huh J, McCormick L, Rajendra A, et al. S-100beta protein-in-serum levels in healthy children and its association with outcome in pediatric traumatic brain injury. <i>Crit Care Med</i> 2003; 31: 939-45. doi: <a href="https://10.1097/01.CCM.0000053644.16336.52">https://10.1097/01.CCM.0000053644.16336.52</a>                                                                                                                                                                            | No data<br>No data on CT scan                        |
| 102 | 2002 | Biberthaler P, Mussack T, Wiedemann E, Kanz KG, Mutschler W, Linsenmaier U, et al. Rapid identification of high-risk patients after minor head trauma (MHT) by assessment of S-100B: ascertainment of a cut-off level. <i>European journal of medical research</i> 2002; 7: 164-70. <a href="https://pubmed.ncbi.nlm.nih.gov/12010651/">https://pubmed.ncbi.nlm.nih.gov/12010651/</a>                                                                                                                                             | Wrong population<br>No info on age                   |
| 103 |      | Mussack T, Biberthaler P, Kanz KG, Heckl U, Gruber R, Linsenmaier U, et al. Immediate S-100B and neuron-specific enolase plasma measurements for rapid evaluation of primary brain damage in alcohol-intoxicated, minor head-injured patients. <i>Shock (Augusta, Ga)</i> 2002; 18: 395-400. doi: <a href="https://dx.doi.org/10.1097/00024382-200211000-00002">https://dx.doi.org/10.1097/00024382-200211000-00002</a>                                                                                                           | Wrong population<br>No data on <18 yrs               |
| 104 |      | Berger RP, Pierce MC, Wisniewski SR, Adelson PD, Kochanek PM. Serum S100B concentrations are increased after closed head injury in children: a preliminary study. <i>J Neurotrauma</i> 2002; 19: 1405-9. doi: <a href="https://10.1089/089771502320914633">https://10.1089/089771502320914633</a>                                                                                                                                                                                                                                 | No data<br>Not all S-100B were within 6 hours        |
| 105 | 2001 | Biberthaler P, Mussack T, Wiedemann E, Kanz KG, Koelsch M, Gippner-Steppert C, et al. Evaluation of S-100b as a specific marker for neuronal damage due to minor head trauma. <i>World journal of surgery</i> 2001; 25: 93-7. doi: <a href="https://dx.doi.org/10.1007/s002680020370">https://dx.doi.org/10.1007/s002680020370</a>                                                                                                                                                                                                | Wrong population<br>No info on age                   |
| 106 |      | Herrmann M, Curio N, Jost S, Grubich C, Ebert AD, Fork ML, et al. Release of biochemical markers of damage to neuronal and glial brain tissue is associated with short and long term neuropsychological outcome after traumatic brain injury. <i>Journal of neurology, neurosurgery, and psychiatry</i> 2001; 70: 95-100. doi: <a href="https://dx.doi.org/10.1136/jnnp.70.1.95">https://dx.doi.org/10.1136/jnnp.70.1.95</a>                                                                                                      | Wrong population<br>No data on <18 yrs separately    |
| 107 | 2000 | Fridriksson T, Kini N, Walsh-Kelly C, Hennes H. Serum neuron-specific enolase as a predictor of intracranial lesions in children with head trauma: a pilot study. <i>Academic emergency medicine : official journal of the Society for Academic Emergency Medicine</i> 2000; 7: 816-20. doi: <a href="https://dx.doi.org/10.1111/j.1553-2712.2000.tb02276.x">https://dx.doi.org/10.1111/j.1553-2712.2000.tb02276.x</a>                                                                                                            | No data*<br>No outcome data for GCS 14-15 separately |
| 108 |      | Herrmann M, Jost S, Kutz S, Ebert AD, Kratz T, Wunderlich MT, et al. Temporal profile of release of neurobiochemical markers of brain damage after traumatic brain injury is associated with intracranial pathology as demonstrated in cranial computerized tomography. <i>Journal of neurotrauma</i> 2000; 17: 113-22. doi: <a href="https://dx.doi.org/10.1089/neu.2000.17.113">https://dx.doi.org/10.1089/neu.2000.17.113</a>                                                                                                  | Wrong population<br>No data on <18 yrs separately    |
| 109 |      | Mussack T, Biberthaler P, Wiedemann E, Kanz KG, Englert A, Gippner-Steppert C, et al. S-100b as a screening marker of the severity of minor head trauma (MHT)--a pilot study. <i>Acta neurochirurgica Supplement</i> 2000; 76: 393-6. doi: <a href="https://dx.doi.org/10.1007/978-3-7091-6346-7_81">https://dx.doi.org/10.1007/978-3-7091-6346-7_81</a>                                                                                                                                                                          | Wrong publication type<br>Conference paper           |
| 110 |      | Romner B, Ingebrigtsen T, Kongstad P, Borgesen SE. Traumatic brain damage: serum S-100 protein measurements related to neuroradiological findings. <i>J Neurotrauma</i> 2000; 17: 641-7. doi: <a href="https://10.1089/089771500415391">https://10.1089/089771500415391</a>                                                                                                                                                                                                                                                       | Wrong population<br>No data on <18 yrs separately    |
| 111 | 1999 | Herrmann M, Curio N, Jost S, Wunderlich MT, Synowitz H, Wallesch CW. Protein S-100B and neuron specific enolase as early neurobiochemical markers of the severity of traumatic brain injury. <i>Restorative Neurology and Neuroscience</i> 1999; 14: 109-14. <a href="https://www.embase.com/search/results?subaction=viewrecord&amp;id=L29173191&amp;from=export">https://www.embase.com/search/results?subaction=viewrecord&amp;id=L29173191&amp;from=export</a>                                                                | Wrong population<br>No data on <18 yrs separately    |
| 112 | 1998 | Ergun R, Bostanci U, Akdemir G, Beskonakli E, Kaptanoglu E, Gursoy F, et al. Prognostic value of serum neuron-specific enolase levels after head injury. <i>Neurological research</i> 1998; 20: 418-20. doi: <a href="https://dx.doi.org/10.1080/01616412.1998.11740541">https://dx.doi.org/10.1080/01616412.1998.11740541</a>                                                                                                                                                                                                    | Wrong population<br>No data on <18 yrs separately    |
| 113 | 1992 | Skogseid, I. M., Nordby, H. K., Urdal, P., et al. Increased serum creatine kinase BB and neuron specific enolase following head injury indicates brain damage. <i>Acta neurochirurgica</i> . 1992, 115, 3-4,106-11.                                                                                                                                                                                                                                                                                                               | Wrong population<br>Age >18 yrs                      |

\*No data on GCS 14 and 15 separately

**Appendix 3** Accuracy and calculated likelihood ratio of positive and negative tests based on data extracted from the study by Chiollaz, and Simon-Pimmel, respectively.

Threshold values for likelihood ratios of positive and negative tests, respectively:

LR (+) >2 is of clinical interest; LR (-) <0.2 is of clinical interest

**Table 1** Distribution of patients when sensitivity is set at 100% and specificity 33%, from the study by Chiollaz et al (n=43)

|           | CT positive | CT negative | Total |
|-----------|-------------|-------------|-------|
| S100B pos | 7           | 24          | 31    |
| S100B neg | 0           | 12          | 12    |
| Total     | 7           | 36          | 43    |

Sensitivity 7/7 = 1

Specificity 12/36 = 0.33

LR + (7/7) / (24/36) = 1/0.66 = 1.5

LR - (0/7) / (12/36) = 0/0.33 = 0

PPV 7/31 = 23%

NPV 12/12 = 1

**Table 2a** Distribution of all patients included according to findings presented in Figure 2 in the study by **Simon-Pimmel** (n=109)

|           | Traumatic brain injury | No traumatic brain injury | Total |
|-----------|------------------------|---------------------------|-------|
| S100B pos | 13                     | 34                        | 47    |
| S100B neg | 4                      | 58                        | 62    |
| Total     | 17                     | 92                        | 109   |

Sensitivity 13/17 = 0.76

Specificity 58/92 = 0.63

LR + (13/17) / (34/92) = 0.76 / 0.37 = 2.05

LR - (4/17) / (58/92) = 0.24 / 0.63 = 0.38

PPV 13/47 = 0.28

NPV 58/62 = 0.89

**Table 2b** Distribution of patients in **the PECARN high-risk group** according to findings presented in Figure 2 in the study by Simon-Pimmel et al (n=60)

|           | Traumatic brain injury | No traumatic brain injury | Total |
|-----------|------------------------|---------------------------|-------|
| S100B pos | 12                     | 18                        | 30    |
| S100B neg | 3                      | 27                        | 30    |
| Total     | 15                     | 45                        | 60    |

Sensitivity 12/15 = 0.8

Specificity 27/45 = 0.6

LR + (12/15) / (18/45) = 0.8 / 0.4 = 2

LR - (3/15 / (27/45) = 0.2 / 0.6 = 0.33

PPV 12/30 = 0.4

NPV 27/30 = 0.9

**Table 2c** Distribution of patients in the **PECARN intermediate-risk group** according to the findings presented in Figure 2 in the study by Simon-Pimmel (n=47)

|           | Traumatic brain injury | No traumatic brain injury | Total |
|-----------|------------------------|---------------------------|-------|
| S100B pos | 1                      | 16                        | 17    |
| S100B neg | 1                      | 29                        | 30    |
| Total     | 2                      | 45                        | 47    |

Sensitivity 1/2 = 0.5

Specificity 29/ 45 = 0.64

LR + (1/2) / (16/45) = 0.5 / 0.35 = 1.4

LR - (1/2) / (29/45) = 0.5 / 0.64 = 0.8

PPV 1/17 = 0.06

NPV 29/30 = 0.97

**Table 2d** Distribution of patients in the **PECARN low-risk group** according to findings presented in Figure 2 in the study by Simon-Pimmel (n=2)

|           | Traumatic brain injury | No traumatic brain injury | Total |
|-----------|------------------------|---------------------------|-------|
| S100B pos | 0                      | 0                         | 0     |
| S100B neg | 0                      | 2                         | 2     |
| Total     | 0                      | 2                         | 2     |

Sensitivity 0/0 = undefined

Specificity 2/2 = 1

LR + (0/0) / (0/2) = undefined

LR - (0/0) / (2/2) = undefined

### Three scenarios based on the findings in the study by Simon-Pimmel

If both the high- and intermediate risk group used S100B, the number of CT scans would be 47, and 4/17 (24%) TBI would be missed (Table 3).

If all patients in the PECARN high-risk group had CT and the intermediate-risk group used S100B, the number of CT scans would be 77 and 1/17 (6%) TBI be missed.

If all patients in the PECARN high-risk group had CT but no patient in the intermediate group had CT, the number of CT scans would be 60 and 2/17 (12%) patients with TBI be missed.

**Table 3** Number of CT and proportion of TBI missed based on data from the study by Simon-Pimmel.

| High risk group   | Intermediate risk group | Number of head CT | Proportion of TBI missed |
|-------------------|-------------------------|-------------------|--------------------------|
| CT based on S100B | CT based on S100B       | 47                | 24%                      |
| All had CT        | CT based on S100B       | 77                | 6%                       |
| All had CT        | None had CT             | 60                | 12%                      |

**Appendix 4** Specificity and positive predictive values at prevalence rates of 1/100 and 1/1000 with 100% sensitivity.

**A Prevalence of condition 1/100 (eg ciTBI), and specificity 33, 50, 66 and 99%.**

Specificity 99%

|              | CT pos | CT neg | Totalt |                 |
|--------------|--------|--------|--------|-----------------|
| Pos lab test | 1      | 1      | 2      | PPV 1 / 2 = 0.5 |
| Neg lab test | 0      | 98     | 98     |                 |
| Total        | 1      | 99     | 100    |                 |

Specificity 66%

|         | CT pos | CT neg | Totalt |                    |
|---------|--------|--------|--------|--------------------|
| Pos lab | 1      | 34     | 35     | PPV = 1/ 35 = 0.03 |
| Neg lab | 0      | 65     | 65     |                    |
| Total   | 1      | 99     | 100    |                    |

Specificity 50%

|         | CT pos | CT neg | Totalt |                   |
|---------|--------|--------|--------|-------------------|
| Pos lab | 1      | 49     | 50     | PPV = 1/50 = 0.02 |
| Neg lab | 0      | 50     | 50     |                   |
| Total   | 1      | 99     | 100    |                   |

Specificity 33%

|         | CT pos | CT neg | Totalt |                    |
|---------|--------|--------|--------|--------------------|
| Pos lab | 1      | 66     | 67     | PPV = 1/67 = 0.015 |
| Neg lab | 0      | 33     | 33     |                    |
| Total   | 1      | 99     | 100    |                    |

**Summary:** A better specificity, from 33% to 66%, will increase the PPV from 1/67 (1.5%) to 1/35 (3%). PPV is 50% when the specificity is 99%.

**B Prevalence of condition 1/1000 (e.g. need for neurosurgical intervention), and specificity 33, 50, 66 and 99%**

Specificity 99%

|         | CT pos | CT neg | Totalt |                     |
|---------|--------|--------|--------|---------------------|
| Pos lab | 1      | 10     | 11     | PPV = 1 / 11 = 0.09 |
| Neg lab | 0      | 989    | 989    |                     |
| Total   | 1      | 999    | 1000   |                     |

Specificity 66%

|         | CT pos | CT neg | Totalt |                       |
|---------|--------|--------|--------|-----------------------|
| Pos lab | 1      | 340    | 341    | PPV = 1 / 341 = 0.003 |
| Neg lab | 0      | 659    | 659    |                       |
| Total   | 1      | 999    | 1000   |                       |

Specificity 50%

|         | CT pos | CT neg | Totalt |                       |
|---------|--------|--------|--------|-----------------------|
| Pos lab | 1      | 499    | 500    | PPV = 1 / 500 = 0.002 |
| Neg lab | 0      | 500    | 500    |                       |
| Total   | 1      | 999    | 1000   |                       |

Specificity 33%

|         | CT pos | CT neg | Totalt |                       |
|---------|--------|--------|--------|-----------------------|
| Pos lab | 1      | 669    | 670    | PPV = 1 / 670 = 0.001 |
| Neg lab | 0      | 330    | 330    |                       |
| Total   | 1      | 999    | 1000   |                       |

**Summary:** A better specificity, from 33% to 66%, will increase the PPV from 1/670 (1.5%) to 1/341 (3%). PPV is 9% when the specificity is 99%.

**Conclusion:** Given the low prevalence of the condition examined, anything but a very high specificity will lead to a meaningful increase in the positive predictive value.

